Hybrid Models with
Deep and Invertible Features

Eric Nalisnick*, Akihiro Matsukawa?*,
Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan

(’ DeepMind

*equal contribution

Predictive Models

p(y|x; 0)

W = data, = = prediction, I:l = uncertainty

Hybrid Models with Deep and Invertible Features

Predictive Models Generative Models

p(y|x; 0) p(x; @)

M = data, —— = prediction, I:l = uncertainty 04 . Observation
2 Em KDE

14 J
0.5+ o =
Y !
-0.54 —
14

4.2 6.8 9.4 12 1
x 0 2 - 6 8 10 12

X

log p(x)

Q DeepMind Hybrid Models with Deep and Invertible Features

Predictive Models Generative Models

® 0 00 00 06 o
0 2 B 6 8 10

Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

b DeepMind

Deep Invertible
Generalized
Linear Model

(DIGLM)

Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

p(yna Ln; 9) :\p(yn|wn5 B, ¢)} P(wn; ¢)

Y ——

Predictive Generative
Component Component

Q DeepMind

Deep Invertible
Generalized
Linear Model

(DIGLM)

Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

p(yna Ln; 9) — p(yn|wn; B, ¢) p(wn; ¢)

0
=y £ (@n; 9): B)| - (f (n: #) | 22
Linear Model Normalizing Flow

b DeepMind

Deep Invertible
Generalized
Linear Model

(DIGLM)

Neural Hybrid Model y

A
We define a computationally efficient hybrid model ls_'(872)]
by combining normalizing flows with generalized 2
linear models (GLMs). -
f(x;)

Input features. \“

Deep Invertible
Generalized
Linear Model

(DIGLM)

b DeepMind

Neural Hybrid Model

y
A
We define a computationally efficient hybrid model |9_1(fTZ)|
Z
A

by combining normalizing flows with generalized
linear models (GLMs).

Normalizing flow acts
as a deep neural feature
ex tl’ a CtOf Deep Invertible

Generalized
Linear Model
(DIGLM)

b DeepMind

Neural Hybrid Model y

A
We define a computationally efficient hybrid model ls_'(872)]
by combining normalizing flows with generalized 2
linear models (GLMs). -
f(x;)

Flow’s output and params.

are used to compute p(x) “

via change-of-variables.

Deep Invertible
Generalized
Linear Model

(DIGLM)

b DeepMind

Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

Flow's output is used as
the feature vectorin a
(generalized) linear mode|,
which computes p(y|x).

Deep Invertible
Generalized
Linear Model

(DIGLM)

b DeepMind

Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

Weight to trade-off predictive and
generative performance.

Optimization objective: /
N

jA(H) — Z (logp(yn|mn§/67 ¢) + Mogp(l'n; ¢))

n=1

b DeepMind

Deep Invertible
Generalized
Linear Model

(DIGLM)

Simulation: Heteroscedastic Regression

== 1 True Function w/o Noise
=== Posterior Predictive Mean
100 o Observations

-150

0
X

Gaussian
process fitted to
simulated data.

Q DeepMind

Hybrid Models with Deep and Invertible Features

Simulation: Heteroscedastic Regression

== 1 True Function w/o Noise
=== Posterior Predictive Mean
100 o Observations

-150

0
X

Gaussian
process fitted to
simulated data.

Q DeepMind

== 1 True Function w/o Noise
=== Posterior Predictive Mean
e Observations

0
X

Our model’s
predictive
component.

Hybrid Models with Deep and Invertible Features

Simulation: Heteroscedastic Regression

i 1
Gaussian
process fitted to
simulated data.

b DeepMind

200

- == 1 True Function w/o Noise
== Posterior Predictive Mean
e Observations

0
X

Our model’s
predictive
component.

log p(x)

0| — DIGLM

KDE,

0
X

Our model’s
generative
component.

or more details, please visit our poster.

HyBRrID MoDELs WiTH DEEP AND INVERTIBLE FEATURES

Eric Nalisnick”, Akihiro Matsukawa®, Yee Whye Teh, Dilan Gorur,

Balaji Lakshminarayanan

ﬂ DeepMind

*equal contribution

1. INTRODUCTION 3. CoMBINING DEEP GENERATIVE MODELS AND LINEAR MODELS
e Neural networks usually model the conditional distribution

PWlx). where y denotes a label and x features.

We define a model of the joint distribution p(y, x) by
instantiating a GLM on the output of a normalizing flow:

P(Yn, Tn; 0) = p(ynl|n; B, ¢) P(Tn; @)

e Generative models, on the other hand,
distribution over features p(x).

represent the

e Can we efficiently combine the two in a hybrid model of
the joint distribution p(y, x)?

In practice, we add a weight to the flow terms to tradeoff
between predictive and generative behavior:
N

MOEDS (10gp('yn\wn; B, ¢) + Mogp(@n; ¢))

Examples
= |1+ uT f"(wTx + b)w]|where w, u are parameters

Conditional Model Generative Model

Y‘1 2.d S, a3 d).) where s() are scaling operations.

2. BACKGROUND > a 51d(%5 @) + hjw; log [det Wi |. waxa params,

Invertible Generative Models (Normalizing Flows)
Invertible generative models (aka. normalizing flows) are a
broad class of models defined via the change-of-variables
formula. An initial density p(x) ‘flows’ through a series of
transformations f(x) and morphs into some (usually simpler)
prior distribution p(2).

0f¢

log pa(logp. (f(x

Bayesian treatment: we can place a prior on the parameters
of the GLM in order to quantify model and data uncertainty.

f(@;0) ~p(2), B~p(B), yn~pyalf(@n;$),B)

For a Gaussian prior on the GLM, the predictive model can be
trained via the closed-form marginal likelihood:

10g p(yn S (Tn; ¢)) = logN (y; 0, o0l + X' Z4 Z)

Deep Invertible
Generalized
Linear Model

®)) + log (DIGLM)

4. SIMULATION

Generalized Linear Models (GLMs)

Generalized linear models (GLMs) model the expected
response (or label) y as a transformation of the linear model
Bz where B are parameters and z are features (covariates).

-1 T
g (ﬂ z)
e Regression: [E[y|z] = identity(87z)
o Binary Classification: [E[y|z] = logistic(8”z)

(a) Gaussian Process (b) B-DIGLM p(y|z) (¢) B-DIGLM p(z)
1D regression task with heteroscedastic noise. Subfigure (a) shows a Gaussian
process and Subfigure (b) shows our Bayesian DIGLM. Subfigure (c) shows p(x)
learned by the same DIGLM (black line) and compares it to a KDE (gray shading).

5. EXPERIMENTS

MODEL

TMONDRIAN FORESTS (SOTA) 38.38 691
DIGLM

6.91

40.46 5.07

o This data set exhibits covariate shift
between the train and test splits.

e The DIGLM's p(x) component is able
to detect this shift (see left).

l-.II"I '

og p(x)

Classification on MNIST and SVHN

e \ controls the trade-off
between plylx) and p(x).

e Hybrid model is better
able to detect the OOD
inputs via p(x).

Half-moons simulation: the
DIGLM leverages unlabeled
data to learn a smooth decision
boundary (N=10 labeled points)

(@) Fully Supervised (b) With Unlabeled Data

SSL (VAT) with only
1000 labels (2% of
labeled data) achieves
<1% error on MNIST

Model “error | MNIST-NI

1000 labels only 1% 0276
1000 labels + unlabeled 0.99% 0.069
All labeled 0.7 0.035

6. SUMMARY

We defined a neural hybrid model that can efficiently compute
both predictive plylx) and generative p(x) distributions, in a single
feed-forward pass, making it a useful building block for
downstream applications of probabilistic deep learning.

Paper: https://arxiv.org/abs/1902.02767

