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Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).
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Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).
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Neural Hybrid Model y
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We define a computationally efficient hybrid model ls_'(872)]
by combining normalizing flows with generalized 2
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Neural Hybrid Model
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A
We define a computationally efficient hybrid model ls_'(872)]
by combining normalizing flows with generalized 2
linear models (GLMs). -
f(x; )

Flow’s output and params.

are used to compute p(x) “

via change-of-variables.
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Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

Flow's output is used as
the feature vectorin a
(generalized) linear mode|,
which computes p(y|x).

Deep Invertible
Generalized
Linear Model

(DIGLM)

b DeepMind



Neural Hybrid Model

We define a computationally efficient hybrid model
by combining normalizing flows with generalized
linear models (GLMs).

Weight to trade-off predictive and
generative performance.

Optimization objective: /
N
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Simulation: Heteroscedastic Regression
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1. INTRODUCTION 3. CoMBINING DEEP GENERATIVE MODELS AND LINEAR MODELS
e Neural networks usually model the conditional distribution

PWlx). where y denotes a label and x features.

We define a model of the joint distribution p(y, x) by
instantiating a GLM on the output of a normalizing flow:

P(Yn, Tn; 0) = p(ynl|n; B, ¢) P(Tn; @)

e Generative models, on the other hand,
distribution over features p(x).

represent the

e Can we efficiently combine the two in a hybrid model of
the joint distribution p(y, x)?

In practice, we add a weight to the flow terms to tradeoff
between predictive and generative behavior:
N

MOEDS (10gp('yn\wn; B, ¢) + Mogp(@n; ¢))

Examples
= |1+ uT f"(wTx + b)w]|where w, u are parameters

Conditional Model Generative Model
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Invertible Generative Models (Normalizing Flows)
Invertible generative models (aka. normalizing flows) are a
broad class of models defined via the change-of-variables
formula. An initial density p(x) ‘flows’ through a series of
transformations f(x) and morphs into some (usually simpler)
prior distribution p(2).

0f¢

log pa( logp. (f(x

Bayesian treatment: we can place a prior on the parameters
of the GLM in order to quantify model and data uncertainty.

f(@;0) ~p(2), B~p(B), yn~pyalf(@n;$),B)

For a Gaussian prior on the GLM, the predictive model can be
trained via the closed-form marginal likelihood:

10g p(yn S (Tn; ¢)) = logN (y; 0, o0l + X' Z4 Z)
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4. SIMULATION

Generalized Linear Models (GLMs)

Generalized linear models (GLMs) model the expected
response (or label) y as a transformation of the linear model
Bz where B are parameters and z are features (covariates).

-1 T
g (ﬂ z )
e Regression: [E[y|z] = identity(87z)
o Binary Classification: [E[y|z] = logistic(8”z)

(a) Gaussian Process (b) B-DIGLM p(y|z) (¢) B-DIGLM p(z)
1D regression task with heteroscedastic noise. Subfigure (a) shows a Gaussian
process and Subfigure (b) shows our Bayesian DIGLM. Subfigure (c) shows p(x)
learned by the same DIGLM (black line) and compares it to a KDE (gray shading).

5. EXPERIMENTS

MODEL

TMONDRIAN FORESTS (SOTA)  38.38 691
DIGLM

6.91

40.46 5.07

o This data set exhibits covariate shift
between the train and test splits.

e The DIGLM's p(x) component is able
to detect this shift (see left).
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Classification on MNIST and SVHN

e \ controls the trade-off
between plylx) and p(x).

e Hybrid model is better
able to detect the OOD
inputs via p(x).

Half-moons simulation: the
DIGLM leverages unlabeled
data to learn a smooth decision
boundary (N=10 labeled points)

(@) Fully Supervised  (b) With Unlabeled Data

SSL (VAT) with only
1000 labels (2% of
labeled data) achieves
<1% error on MNIST

Model “error | MNIST-NI

1000 labels only 1% 0276
1000 labels + unlabeled 0.99% 0.069
All labeled 0.7 0.035

6. SUMMARY

We defined a neural hybrid model that can efficiently compute
both predictive plylx) and generative p(x) distributions, in a single
feed-forward pass, making it a useful building block for
downstream applications of probabilistic deep learning.

Paper: https://arxiv.org/abs/1902.02767




