

Graphite: Iterative Generative Modeling of Graphs

Aditya Grover, Aaron Zweig, Stefano Ermon Computer Science Department Stanford University

Graphs are ubiquitous

How do we **learn representations** of nodes in a graph?

Useful for several prediction tasks. *E.g.,* friendship links on social networks (**link prediction**), living status of organisms in ecological networks (**node classification**)

Social, biological, information networks etc.

Latent Variable Model of a Graph

- Graphs are represented as adjacency matrices $A \in \{0,1\}^{n \times n}$
- For every node *i*, we associate a latent vector representation $\mathbf{z}_i \in \mathbb{R}^k$

Graphite: A VAE for Graphs

Graphite: A VAE for Graphs

Graphite: Learning & Inference

Given: Dataset of adjacency matrices, D_A

Graphite: Learning & Inference

Given: Dataset of adjacency matrices, D_A

Learning objective: $\max_{\theta,\phi} ELBO(\theta,\phi;D_A)$

Graphite: Learning & Inference

Ζ $p_{\theta}(A | Z)$ Α **Given:** Dataset of adjacency matrices, D_A **Learning objective:** $\max_{\theta,\phi} ELBO(\theta,\phi;D_A)$ **Test time use cases Generative modeling tasks** Density estimation, eluctoring nodes

- Density estimation, clustering nodes, compressing graphs etc.

Graph tasks

- Link Prediction: Denoise graph
- Semi-supervised node classification: Feed z_i for labelled nodes to a classifier

Parameterizing Graph Autoencoders

Parameterizing Graph Autoencoders

Encoding $q_{\phi}(Z|A)$: Graph Neural Network (GNN)

Decoding $p_{\theta}(A | Z)$: Challenging to "upsample" graphs given latent representations

Decoding Graphs - MLP

Option 1: Multi-layer Perceptrons (MLP)

Simonovsky et al., 2018

 $O(n^2d + dk)$ total parameters for single hidden layer of width d

Graphite: Iterative Generative Modeling of Graphs

Decoding Graphs - RNN

Option 2: Recurrent Neural Network (RNN)

You et al., 2018

Arbitrary ordering of nodes required for training e.g., BFS, DFS

Key idea

Learn the low-rank structure of adjacency matrix A in the latent space Z

For fixed number of iterations: **Step 1 (Low rank matrix reconstruction)** Map Z to an intermediate graph \widehat{A} via an inner product $\widehat{A} \approx ZZ^T$

 $\mathbf{Z} \in \mathbb{R}^{n \times k}$

For fixed number of iterations: Step 1 (Low rank matrix reconstruction) Map Z to an intermediate graph \widehat{A} via an inner product $\widehat{A} \approx ZZ^{T}$

Step 2 (Progressive refinement)

Refine Z by message passing over \widehat{A} using a GNN $Z = GNN_{\theta}(\widehat{A})$

 $\mathbf{Z} \in \mathbb{R}^{n \times k}$

Ζ

For fixed number of iterations: **Step 1 (Low rank matrix reconstruction)** Map Z to an intermediate graph \widehat{A} via an inner product $\widehat{A} \approx ZZ^T$

Step 2 (Progressive refinement)

Refine Z by message passing over \widehat{A} using a GNN Z = GNN_{θ}(\widehat{A})

Output step: Set $p_{\theta}(A | Z)$ = Bernoulli(sigmoid(ZZ^{T}))

- Unlike MLP, GNN decoder with single hidden layer of length *d* has O(dk) parameters
- Unlike RNN, no arbitrary ordering of input nodes is required

Decoding is also **computationally** efficient. See paper for details.

Empirical Results – Density Estimation

Baseline VGAE [Kipf et al., 2016] GNN Encoder + Non-learned Inner Product Decoder. No iterative refinement.

Negative log-likelihoods. Lower is better.

Graphite: Iterative Generative Modeling of Graphs

Empirical Results – Link Prediction

Empirical Results – Semi-supervised Node Classification

Graphite: Iterative Generative Modeling of Graphs

Summary

Graphite: A latent variable generative model for graphs where both encoder and decoder are parameterized by graph neural networks.

- Encoder performs message passing on input graph
- **Decoder** iteratively refines inner product graphs

For more details, please visit us at Poster #7. Code: <u>https://github.com/ermongroup/graphite</u>

