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Graphs are ubiquitous 

Graphite: Iterative Generative Modeling of Graphs

Social, biological, information 
networks etc.

How do we learn representations of 
nodes in a graph?

Useful for several prediction tasks. 
E.g., friendship links on social 
networks (link prediction),
living status of organisms in ecological 
networks (node classification)



Latent Variable Model of a Graph
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• Graphs are represented as adjacency matrices A ∈ {0,1}0 ×0
• For every node 2, we associate a latent vector representation #3 ∈ ℝ5
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Graphite: A VAE for Graphs
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latent matrix Z ∈ ℝ) × +

adjacency matrix A ∈ {0,1}) × )

Decoder: Generate data 



Graphite: A VAE for Graphs
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latent matrix Z ∈ ℝ+ × -

adjacency matrix A ∈ {0,1}+ × +

Decoder: Generate data Encoder: Infer representations



Graphite: Learning & Inference
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Given: Dataset of adjacency matrices, )*



Graphite: Learning & Inference
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Given: Dataset of adjacency matrices, )*
Learning objective:  max$,( ELBO(3, 4; D*)



Graphite: Learning & Inference
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Given: Dataset of adjacency matrices, )*
Learning objective:  max$,( ELBO(3, 4; D*)
Test time use cases
Generative modeling tasks
- Density estimation, clustering nodes, 

compressing graphs etc.

Graph tasks
- Link Prediction: Denoise graph 
- Semi-supervised node classification: Feed 89 for 

labelled nodes to a classifier



Parameterizing Graph Autoencoders
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Encoding #$ Z A): Graph Neural Network (GNN)GNN



Parameterizing Graph Autoencoders
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Encoding '( Z A): Graph Neural Network (GNN)

Decoding #$(A |Z): Challenging to “upsample” 
graphs given latent representations

? GNN



Decoding Graphs - MLP
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Option 1: Multi-layer Perceptrons (MLP)

'(()* + *,) total parameters for single 
hidden layer of width *

Z ∈ ℝ0 × 2

A ∈ {0,1}0 × 0

Simonovsky et al., 2018
MLP



Decoding Graphs - RNN
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Option 2: Recurrent Neural Network (RNN)

Arbitrary ordering of nodes
required for training 
e.g., BFS, DFS

You et al., 2018
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RNN



Graphite – Decoding Graphs using GNN 
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Key idea
Learn the low-rank structure of adjacency 
matrix A in the latent space Z
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Z ∈ ℝ) × +

A ∈ {0,1}) × )

GNN



Graphite – Decoding Graphs using GNN 
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• For fixed number of iterations:
Step 1 (Low rank matrix reconstruction) 
Map Z to an intermediate graph !A via an inner product

!A ≈ ZZ%
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Z ∈ ℝ, × .

A ∈ {0,1}, × ,

GNN



Graphite – Decoding Graphs using GNN 

Graphite: Iterative Generative Modeling of Graphs

• For fixed number of iterations:
Step 1 (Low rank matrix reconstruction) 
Map Z to an intermediate graph !A via an inner product

!A ≈ ZZ%

Step 2 (Progressive refinement)
Refine Z by message passing over !A using a GNN

Z = GNN)(!A)
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,)(A |Z)

Z ∈ ℝ0 × 2

A ∈ {0,1}0 × 0

GNN



Graphite – Decoding Graphs using GNN 
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• For fixed number of iterations:
Step 1 (Low rank matrix reconstruction) 
Map Z to an intermediate graph !A via an inner product

!A ≈ ZZ%

Step 2 (Progressive refinement)
Refine Z by message passing over !A using a GNN

Z = GNN)(!A)
• Output step: Set ,)(A |Z) = Bernoulli(sigmoid(ZZ%))
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Z ∈ ℝ0 × 2

A ∈ {0,1}0 × 0

GNN



Graphite – Decoding Graphs using GNN 
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- Unlike MLP, GNN decoder with 
single hidden layer of length d has 
!(dk) parameters

- Unlike RNN, no arbitrary ordering of 
input nodes is required

Decoding is also computationally efficient. 
See paper for details.
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GNN



Empirical Results – Density Estimation
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Baseline VGAE [Kipf et al., 2016]
GNN Encoder + Non-learned Inner Product Decoder. No iterative refinement.



Empirical Results – Link Prediction
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Empirical Results – Semi-supervised 
Node Classification
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Summary

Graphite: Iterative Generative Modeling of Graphs

Graphite: A latent variable generative model for graphs where both encoder 
and decoder are parameterized by graph neural networks.

• Encoder performs message passing on input graph
• Decoder iteratively refines inner product graphs

For more details, please visit us at Poster #7.
Code: https://github.com/ermongroup/graphite
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https://github.com/ermongroup/graphite

