
Learning Discrete and Continuous Factors of
Data via Alternating Disentanglement

Yeonwoo Jeong, Hyun Oh Song

Seoul National University

ICML19

1

Motivation

Shape? square

Postion x? 0.3

Postion y? 0.7

Size? 0.5

Rotation? 40°

I Our goal is to disentangle the
underlying explanatory factors of
data without any supervision.

2

Motivation

square

0.3

0.7

0.5

40°

square

0.3

0.7

0.5

40°

3

Motivation

square

0.3

0.7

0.5

40°

ellipse

0.3

0.7

0.5

40°

3

Motivation

square

0.3

0.7

0.5

40°

square

1

0.7

0.5

40°

3

Motivation

square

0.3

0.7

0.5

40°

square

0.3

0.7

0°

0.5

3

Motivation

square

0.3

0.7

0.5

40°

square

0.3

0.7

1

40°

3

Motivation

I Most recent methods focus on learning only the continuous factors of
variation.

I Learning discrete representations is known as a challenging
problem. However, learning continuous and discrete
representations is a more challenging problem.

4

Motivation

I Most recent methods focus on learning only the continuous factors of
variation.

I Learning discrete representations is known as a challenging
problem. However, learning continuous and discrete
representations is a more challenging problem.

4

Outline

Method

Experiments

Conclusion

Method 5

Overview of our method

𝑥

𝑧1

ො𝑥

𝛽𝑙 on KL regularizer

𝛽ℎ on KL regularizer

𝑧𝑖

𝑧𝑛

𝑑

𝑞𝜙 𝑧 𝑥 𝑝𝜃 𝑥 𝑧, 𝑑

𝑧

Min cost flow solver

Method 6

Overview of our method

I We propose an efficient procedure for implicitly penalizing the total
correlation by controlling the information flow on each variables.

I We propose a method for jointly learning discrete and continuous
latent variables in an alternating maximization framework.

Method 6

Limitation of β-VAE framework

I β-VAE sets β > 1 to penalize TC(z) for disentangled
representations.

I However, it penalizes the mutual information(= I(x, z)) between the
data and the latent variables.

Method 7

Our method

I We aim at penalizing TC(z) by sequentially penalizing the individual
summand I(z1:i−1; zi).

TC(z) =

m∑
i=2

I(z1:i−1; zi).

I We implicitly minimizes each summand, I(z1:i−1; zi) by sequentially
maximizing the left hand side I(x; z1:i) for all i = 2, . . . ,m
1.

I(x; z1:i) = I(x; z1:i−1) + I(x; zi)− I(z1:i−1; zi).

↑

2.

I(x; z1:i) = I(x; z1:i−1) + I(x; zi)− I(z1:i−1; zi).

↑ • ↑ ↓

Method 8

Our method

I We aim at penalizing TC(z) by sequentially penalizing the individual
summand I(z1:i−1; zi).

TC(z) =

m∑
i=2

I(z1:i−1; zi).

I We implicitly minimizes each summand, I(z1:i−1; zi) by sequentially
maximizing the left hand side I(x; z1:i) for all i = 2, . . . ,m
1.

I(x; z1:i) = I(x; z1:i−1) + I(x; zi)− I(z1:i−1; zi).

↑

2.

I(x; z1:i) = I(x; z1:i−1) + I(x; zi)− I(z1:i−1; zi).

↑ • ↑ ↓

Method 8

Our method

I In practice, we maximize I(x; z1:i) by minimizing reconstruction
term while penalizing zi+1:m with high β (:= βh) and the others
with small β (:= βl).

Method 9

Our method

𝑥

𝑧1

ො𝑥

𝛽𝑙 on KL regularizer

𝛽ℎ on KL regularizer

𝑧𝑖

𝑧𝑛

𝑑

Min cost flow solver

𝑞𝜙 𝑧 𝑥 𝑝𝜃 𝑥 𝑧, 𝑑

𝑧

I Every latent dimensions are heavily penalized with βh. Each penalty
on latent dimension is sequentially relieved one at a time with βl in a
cascading fashion.

Method 10

Our method

𝑥

𝑧1

ො𝑥

𝛽𝑙 on KL regularizer

𝛽ℎ on KL regularizer

𝑧𝑖

𝑧𝑛

𝑑

𝑞𝜙 𝑧 𝑥 𝑝𝜃 𝑥 𝑧, 𝑑

𝑧

Min cost flow solver

I Every latent dimensions are heavily penalized with βh. Each penalty
on latent dimension is sequentially relieved one at a time with βl in a
cascading fashion.

Method 10

Our method

𝑥

𝑧1

ො𝑥

𝛽𝑙 on KL regularizer

𝛽ℎ on KL regularizer

𝑧𝑖

𝑧𝑛

𝑑

𝑞𝜙 𝑧 𝑥 𝑝𝜃 𝑥 𝑧, 𝑑

𝑧

Min cost flow solver

I Every latent dimensions are heavily penalized with βh. Each penalty
on latent dimension is sequentially relieved one at a time with βl in a
cascading fashion.

Method 10

Our method

𝑥

𝑧1

ො𝑥

𝛽𝑙 on KL regularizer

𝛽ℎ on KL regularizer

𝑧𝑖

𝑧𝑛

𝑑

𝑞𝜙 𝑧 𝑥 𝑝𝜃 𝑥 𝑧, 𝑑

𝑧

Min cost flow solver

I Every latent dimensions are heavily penalized with βh. Each penalty
on latent dimension is sequentially relieved one at a time with βl in a
cascading fashion.

Method 10

Graphical model

Figure: Graphical models view. Solid lines denote the generative process and
the dashed lines denote the inference process. x, z, d denotes the data,
continuous latent code, and the discrete latent code respectively.

Method 11

Motviation of our method

I AAE with supervised discrete variables(AAE-S) can learn good
continuous representations when the burden of simultaneously
modeling the continuous and discrete factors is relieved through
supervision on discrete factors unlike jointVAE.

I Inspired by these findings, our idea is to alternate between finding
the most likely discrete configuration of the variables given the
continuous factors, and updating the parameters (φ, θ) given the
discrete configurations.

Method 12

Motviation of our method

I AAE with supervised discrete variables(AAE-S) can learn good
continuous representations when the burden of simultaneously
modeling the continuous and discrete factors is relieved through
supervision on discrete factors unlike jointVAE.

I Inspired by these findings, our idea is to alternate between finding
the most likely discrete configuration of the variables given the
continuous factors, and updating the parameters (φ, θ) given the
discrete configurations.

Method 12

Construct unary term

𝑥(1)

𝑥(1)

𝑥(1)

I The discrete latent variables are
represented using one-hot encodings of
each variables d(i) ∈ {e1, . . . , eS}.

I u
(i)
θ denotes the vector of the likelihood

log pθ(x
(i)|z(i), ek) evaluated at each

k ∈ [S].

Method 13

Construct unary term

𝑥(1)

ො𝑥(1)

𝑥(1)

𝑥(1)

𝑒1

I The discrete latent variables are
represented using one-hot encodings of
each variables d(i) ∈ {e1, . . . , eS}.

I u
(i)
θ denotes the vector of the likelihood

log pθ(x
(i)|z(i), ek) evaluated at each

k ∈ [S].

Method 13

Construct unary term

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

𝑒1

𝑒𝑘

I The discrete latent variables are
represented using one-hot encodings of
each variables d(i) ∈ {e1, . . . , eS}.

I u
(i)
θ denotes the vector of the likelihood

log pθ(x
(i)|z(i), ek) evaluated at each

k ∈ [S].

Method 13

Construct unary term

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑒1

𝑒𝑘

𝑒𝑆

I The discrete latent variables are
represented using one-hot encodings of
each variables d(i) ∈ {e1, . . . , eS}.

I u
(i)
θ denotes the vector of the likelihood

log pθ(x
(i)|z(i), ek) evaluated at each

k ∈ [S].

Method 13

Construct unary term

rec

rec

rec

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑒1

𝑒𝑘

𝑒𝑆

I The discrete latent variables are
represented using one-hot encodings of
each variables d(i) ∈ {e1, . . . , eS}.

I u
(i)
θ denotes the vector of the likelihood

log pθ(x
(i)|z(i), ek) evaluated at each

k ∈ [S].

Method 13

Construct unary term

𝑢1

rec

rec

rec

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑒1

𝑒𝑘

𝑒𝑆

I The discrete latent variables are
represented using one-hot encodings of
each variables d(i) ∈ {e1, . . . , eS}.

I u
(i)
θ denotes the vector of the likelihood

log pθ(x
(i)|z(i), ek) evaluated at each

k ∈ [S].

Method 13

Alternating minimization scheme

I Our goal is to maximize the variational lower bound of the following
objective,

L(θ, φ) = I(x; [z, d])− βEx∼p(x)DKL(qφ(z | x) ‖ p(z))− λDKL(q(d) ‖ p(d))

I After rearranging the terms, we arrive at the following optimization
problem.

maximize
θ,φ

maximize
d(1),...d(n)

n∑
i=1

u
(i)
θ

ᵀ
d(i) − λ′

∑
i 6=j

d(i)
ᵀ
d(j)︸ ︷︷ ︸

:=LLB(θ,φ)

− β

n∑
i=1

DKL(qφ(z|x(i))||p(z))

subject to ‖d(i)‖1 = 1, d(i) ∈ {0, 1}S , ∀i,

Method 14

Finding the most likely discrete configuration

𝑥(1)

𝑥(1)

𝑥(1)

𝑥(i)

𝑥(i)

𝑥(n)

𝑥(n)

𝑥(n)𝑥(i)

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑥(1)

ො𝑥(1)

𝑥(1)

𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

𝑥(n)𝑥(i)

𝑒1 𝑒1 𝑒1

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)𝑥(i)

𝑒1

𝑒𝑘

𝑒1

𝑒𝑘

𝑒1

𝑒𝑘

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

rec

rec

rec

rec

rec

rec

rec

rec

rec

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

Min cost flow solver

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

Min cost flow solver

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

Min cost flow solver

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

Min cost flow solver

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

Min cost flow solver

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I With the unary terms, we solve inner maximization problem
LLB(θ, φ) over the discrete variables [d(1), . . . , d(n)].1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Finding the most likely discrete configuration

𝑢1

rec

rec

rec

𝑢𝑖

rec

rec

rec

𝑢𝑛

rec

rec

rec

Min cost flow solver

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(1)

ො𝑥(1)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(i)

ො𝑥(i)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑥(n)

ො𝑥(n)

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

𝑒1

𝑒𝑘

𝑒𝑆

I The maximization problem can be exactly solved in polynomial time
via minimum cost flow(mcf) without continuous relaxation.1

1Jeong, Y. and Song, H. O. “Efficient end-to-end learning for quantizable representations”
ICML2018.

Method 15

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1) 𝑥(𝑖) 𝑥(𝑛)𝑑(1) 𝑑(𝑖) 𝑑(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Updating the parameters

Min cost flow solver

𝑥(1)

ො𝑥(1)
𝑥(𝑖)

ො𝑥(𝑖)
𝑥(𝑛)

ො𝑥(𝑛)
𝑑(1) 𝑑(𝑖) 𝑑(𝑛)

I Then, we update the parameters under this discrete configurations.

Method 16

Outline

Method

Experiments

Conclusion

Experiments 17

Notation

I We denote our full method as CascadeVAE.

I We evaluate with disentanglement score introduced in FactorVAE
and unsupervised classification accuracy.

I Baselines are β-VAE, JointVAE, FactorVAE

Experiments 18

dSprites Dataset Example

I Shape (discrete) : square, ellipse, heart

I Scale: 6 values linearly spaced in [0.5, 1]

I Orientation: 40 values in [0, 2π]

I Position X: 32 values in [0, 1]

I Position Y: 32 values in [0, 1]

Experiments 19

Quantitative results on dSprites

Disentanglement score

Method m Mean (std) Best

β VAE
(β = 10.0) 5 70.11 (7.54) 84.62

(β = 4.0) 10 74.41 (7.68) 88.38

FactorVAE 5 81.09 (2.63) 85.12
10 82.15 (0.88) 88.25

JointVAE 6 74.51 (5.17) 91.75
4 73.06 (2.18) 75.38

CascadeVAE
(βl = 1.0) 6 90.49 (5.28) 99.50
(βl = 2.0) 4 91.34 (7.36) 98.62

Unsupervised classification
accuracy

Method m Mean (std) Best

JointVAE 6 44.79 (3.88) 53.14
4 43.99 (3.94) 54.11

CascadeVAE 6 78.84 (15.65) 99.66
4 76.00 (22.16) 98.72

Experiments 20

Outline

Method

Experiments

Conclusion

Conclusion 21

Conclusion

I Our experiments show that information cascading and alternating
maximization of discrete and continuous variables, lead to the state of
the art performance in 1) disentanglement score, and 2)
classification accuracy.

I The source code is available at
https://github.com/snu-mllab/DisentanglementICML19.

Conclusion 22

 https://github.com/snu-mllab/DisentanglementICML19

Latent dimension traversal in dSprites

Conclusion 23

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

β-VAE

z1 z2 z3 z4 z5

FactorVAE

z1 z2 z3 z4 z5

24

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

JointVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

25

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

CascadeVAE

d = [1 0 0]

d = [0 1 0]

d = [0 0 1]

z1 z2 z3 z4 z5 z6

26

	Method
	Experiments
	Conclusion
	

