Learning Discrete and Continuous Factors of Data via Alternating Disentanglement

Yeonwoo Jeong, Hyun Oh Song

Seoul National University

ICML19

Most recent methods focus on learning only the continuous factors of variation.

- Most recent methods focus on learning only the continuous factors of variation.
- Learning discrete representations is known as a challenging problem. However, learning continuous and discrete representations is a more challenging problem.

Outline

Method

Experiments

Conclusion

Overview of our method

Overview of our method

- We propose an efficient procedure for implicitly penalizing the total correlation by controlling the information flow on each variables.
- We propose a method for jointly learning discrete and continuous latent variables in an alternating maximization framework.

Limitation of β -VAE framework

- ▶ β-VAE sets β > 1 to penalize TC(z) for disentangled representations.
- However, it penalizes the mutual information (= I(x, z)) between the data and the latent variables.

► We aim at penalizing TC(z) by sequentially penalizing the individual summand I(z_{1:i-1}; z_i).

$$TC(z) = \sum_{i=2}^{m} \mathbf{I}(\mathbf{z_{1:i-1}}; \mathbf{z_i}).$$

We aim at penalizing TC(z) by sequentially penalizing the individual summand I(z_{1:i-1}; z_i).

$$TC(z) = \sum_{i=2}^{m} \mathbf{I}(\mathbf{z_{1:i-1}}; \mathbf{z_i}).$$

We implicitly minimizes each summand, I(z_{1:i-1}; z_i) by sequentially maximizing the left hand side I(x; z_{1:i}) for all i = 2,...,m

$$I(x; z_{1:i}) = I(x; z_{1:i-1}) + I(x; z_i) - \mathbf{I}(\mathbf{z_{1:i-1}}; \mathbf{z_i}).$$

$$\uparrow$$

2.

$$I(x; z_{1:i}) = I(x; z_{1:i-1}) + I(x; z_i) - \mathbf{I}(\mathbf{z}_{1:i-1}; \mathbf{z}_i).$$

$$\uparrow \qquad \bullet \qquad \uparrow \qquad \downarrow$$

In practice, we maximize I(x; z_{1:i}) by minimizing reconstruction term while penalizing z_{i+1:m} with high β (:= β_h) and the others with small β (:= β_l).

Every latent dimensions are heavily penalized with β_h. Each penalty on latent dimension is sequentially relieved one at a time with β_l in a cascading fashion.

Every latent dimensions are heavily penalized with β_h. Each penalty on latent dimension is sequentially relieved one at a time with β_l in a cascading fashion.

Every latent dimensions are heavily penalized with β_h. Each penalty on latent dimension is sequentially relieved one at a time with β_l in a cascading fashion.

Every latent dimensions are heavily penalized with β_h. Each penalty on latent dimension is sequentially relieved one at a time with β_l in a cascading fashion.

Graphical model

(a) β -VAE (b) JointVAE (c) AAE-S (d) Ours

Figure: Graphical models view. Solid lines denote the generative process and the dashed lines denote the inference process. x, z, d denotes the data, continuous latent code, and the discrete latent code respectively.

Motviation of our method

AAE with supervised discrete variables(AAE-S) can learn good continuous representations when the burden of simultaneously modeling the continuous and discrete factors is relieved through supervision on discrete factors unlike jointVAE.

Motviation of our method

- AAE with supervised discrete variables(AAE-S) can learn good continuous representations when the burden of simultaneously modeling the continuous and discrete factors is relieved through supervision on discrete factors unlike jointVAE.
- Inspired by these findings, our idea is to **alternate** between finding the most likely discrete configuration of the variables given the continuous factors, and updating the parameters (ϕ, θ) given the discrete configurations.

► The discrete latent variables are represented using one-hot encodings of each variables d⁽ⁱ⁾ ∈ {e₁,...,e_S}.

► The discrete latent variables are represented using one-hot encodings of each variables d⁽ⁱ⁾ ∈ {e₁,...,e_S}.

► The discrete latent variables are represented using one-hot encodings of each variables d⁽ⁱ⁾ ∈ {e₁,...,e_S}.

► The discrete latent variables are represented using one-hot encodings of each variables d⁽ⁱ⁾ ∈ {e₁,...,e_S}.

► The discrete latent variables are represented using one-hot encodings of each variables d⁽ⁱ⁾ ∈ {e₁,...,e_S}.

► The discrete latent variables are represented using one-hot encodings of each variables d⁽ⁱ⁾ ∈ {e₁,...,e_S}.

• $u_{\theta}^{(i)}$ denotes the vector of the likelihood $\log p_{\theta}(x^{(i)}|z^{(i)}, e_k)$ evaluated at each $k \in [S]$.

Alternating minimization scheme

 Our goal is to maximize the variational lower bound of the following objective,

 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = I(\boldsymbol{x}; [\boldsymbol{z}, \boldsymbol{d}]) - \beta \mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{p}(\boldsymbol{x})} D_{\mathsf{KL}}(\boldsymbol{q}_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \parallel \boldsymbol{p}(\boldsymbol{z})) - \lambda D_{\mathsf{KL}}(\boldsymbol{q}(\boldsymbol{d}) \parallel \boldsymbol{p}(\boldsymbol{d}))$

 After rearranging the terms, we arrive at the following optimization problem.

$$\begin{aligned} \underset{\theta,\phi}{\text{maximize}} & \left(\underbrace{\underset{d^{(1)},\dots,d^{(n)}}{\text{maximize}} \sum_{i=1}^{n} u_{\theta}^{(i)^{\mathsf{T}}} d^{(i)} - \lambda' \sum_{i \neq j} d^{(i)^{\mathsf{T}}} d^{(j)}}_{:=\mathcal{L}_{LB}(\theta,\phi)} \right) \\ & -\beta \sum_{i=1}^{n} D_{KL}(q_{\phi}(z|x^{(i)})||p(z)) \\ \text{subject to} \quad \|d^{(i)}\|_{1} = 1, \ d^{(i)} \in \{0,1\}^{S}, \ \forall i, \end{aligned} \end{aligned}$$

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018. Method

The maximization problem can be exactly solved in polynomial time via minimum cost flow(mcf) without continuous relaxation.¹

¹Jeong, Y. and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

▶ Then, we update the parameters under this discrete configurations.

Outline

Method

Experiments

Conclusion

Experiments

Notation

- ▶ We denote our full method as CascadeVAE.
- We evaluate with disentanglement score introduced in FactorVAE and unsupervised classification accuracy.
- **b** Baselines are β -VAE, JointVAE, FactorVAE

dSprites Dataset Example

- Shape (discrete) : square, ellipse, heart
- Scale: 6 values linearly spaced in [0.5, 1]
- Orientation: 40 values in $[0, 2\pi]$
- ▶ Position X: 32 values in [0,1]
- Position Y: 32 values in [0,1]

Quantitative results on dSprites

Disentanglement score

Method	m	Mean (std)	Best	Unsupervised classification			
βVAE				accuracy			
$(\beta = 10.0)$	5	70.11 (7.54)	84.62				
$(\beta = 4.0)$	10	74.41 (7.68)	88.38	<u> </u>			
FactorVAE	5	81 09 (2 63)	85 12	Method	m	Mean (std)	Best
1 00101 17 12	10	82.15 (0.88)	88.25	JointVAE	6	44.79 (3.88)	53.14
	-			:	4	43.99 (3.94)	54.11
JointVAE	6	74.51 (5.17)	91.75	Cascade\/AE	6	78 84 (15 65)	00 66
	4	73.06 (2.18)	75.38	CascadevAL	4	76.00 (22.16)	98 72
CascadeVAE				·	т	10.00 (22.10)	50.12
$(\beta_l = 1.0)$	6	90.49 (5.28)	99.50				
$\left(\beta_l = 2.0\right)$	4	91.34 (7.36)	98.62				

Experiments

Outline

Method

Experiments

Conclusion

Conclusion

Conclusion

- Our experiments show that information cascading and alternating maximization of discrete and continuous variables, lead to the state of the art performance in 1) disentanglement score, and 2) classification accuracy.
- The source code is available at https://github.com/snu-mllab/DisentanglementICML19.

Latent dimension traversal in dSprites

$$d = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$d = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$d = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$d = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$d = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

