Learning Discrete and Continuous Factors of Data via Alternating Disentanglement

Yeonwoo Jeong, Hyun Oh Song

Seoul National University

ICML19

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

- Most recent methods focus on learning only the continuous factors of variation.

Motivation

- Most recent methods focus on learning only the continuous factors of variation.
- Learning discrete representations is known as a challenging problem. However, learning continuous and discrete representations is a more challenging problem.

Outline

Method

Experiments

Conclusion

Method

Overview of our method

Overview of our method

- We propose an efficient procedure for implicitly penalizing the total correlation by controlling the information flow on each variables.
- We propose a method for jointly learning discrete and continuous latent variables in an alternating maximization framework.

Limitation of β-VAE framework

- β-VAE sets $\beta>1$ to penalize $T C(z)$ for disentangled representations.
- However, it penalizes the mutual information $(=I(x, z))$ between the data and the latent variables.

Our method

- We aim at penalizing $T C(z)$ by sequentially penalizing the individual summand $\mathbf{I}\left(\mathbf{z}_{1: \mathbf{i}-\mathbf{1}} ; \mathbf{z}_{\mathbf{i}}\right)$.

$$
T C(z)=\sum_{i=2}^{m} \mathbf{I}\left(\mathbf{z}_{\mathbf{1}: \mathbf{i}-\mathbf{1}} ; \mathbf{z}_{\mathbf{i}}\right) .
$$

Our method

- We aim at penalizing $T C(z)$ by sequentially penalizing the individual summand $\mathbf{I}\left(\mathbf{z}_{\mathbf{1}: \mathbf{i}-\mathbf{1}} ; \mathbf{z}_{\mathbf{i}}\right)$.

$$
T C(z)=\sum_{i=2}^{m} \mathbf{I}\left(\mathbf{z}_{1: \mathbf{i} \mathbf{- 1}} ; \mathbf{z}_{\mathbf{i}}\right)
$$

- We implicitly minimizes each summand, $\mathbf{I}\left(\mathbf{z}_{1: \mathbf{i}-1} ; \mathbf{z}_{\mathbf{i}}\right)$ by sequentially maximizing the left hand side $I\left(x ; z_{1: i}\right)$ for all $i=2, \ldots, m$

1.

$$
I\left(x ; z_{1: i}\right)=I\left(x ; z_{1: i-1}\right)+I\left(x ; z_{i}\right)-\mathbf{I}\left(\mathbf{z}_{1: \mathbf{i}-\mathbf{1}} ; \mathbf{z}_{\mathbf{i}}\right)
$$

$$
\uparrow
$$

2.

$$
\begin{array}{ccc}
I\left(x ; z_{1: i}\right) & =I\left(x ; z_{1: i-1}\right)+I\left(x ; z_{i}\right)-\mathbf{I}\left(\mathbf{z}_{\mathbf{1 : \mathbf { i } - \mathbf { 1 }}} ; \mathbf{z}_{\mathbf{i}}\right) . \\
\uparrow & \bullet & \downarrow
\end{array}
$$

Our method

- In practice, we maximize $I\left(x ; z_{1: i}\right)$ by minimizing reconstruction term while penalizing $z_{i+1: m}$ with high $\beta\left(:=\beta_{h}\right)$ and the others with small $\beta\left(:=\beta_{l}\right)$.

Our method

β_{h} on KL regularizer
β_{l} on KL regularizer

- Every latent dimensions are heavily penalized with β_{h}. Each penalty on latent dimension is sequentially relieved one at a time with β_{l} in a cascading fashion.

Our method

β_{h} on KL regularizer
β_{l} on KL regularizer

- Every latent dimensions are heavily penalized with β_{h}. Each penalty on latent dimension is sequentially relieved one at a time with β_{l} in a cascading fashion.

Our method

β_{h} on KL regularizer
β_{l} on KL regularizer

- Every latent dimensions are heavily penalized with β_{h}. Each penalty on latent dimension is sequentially relieved one at a time with β_{l} in a cascading fashion.

Our method

β_{h} on KL regularizer
β_{l} on KL regularizer

- Every latent dimensions are heavily penalized with β_{h}. Each penalty on latent dimension is sequentially relieved one at a time with β_{l} in a cascading fashion.

Graphical model

(a) β-VAE
(b) JointVAE

(c) AAE-S

(d) Ours

Figure: Graphical models view. Solid lines denote the generative process and the dashed lines denote the inference process. x, z, d denotes the data, continuous latent code, and the discrete latent code respectively.

Motviation of our method

- AAE with supervised discrete variables(AAE-S) can learn good continuous representations when the burden of simultaneously modeling the continuous and discrete factors is relieved through supervision on discrete factors unlike jointVAE.

Motviation of our method

- AAE with supervised discrete variables(AAE-S) can learn good continuous representations when the burden of simultaneously modeling the continuous and discrete factors is relieved through supervision on discrete factors unlike jointVAE.
- Inspired by these findings, our idea is to alternate between finding the most likely discrete configuration of the variables given the continuous factors, and updating the parameters (ϕ, θ) given the discrete configurations.

Construct unary term

- The discrete latent variables are represented using one-hot encodings of each variables $d^{(i)} \in\left\{e_{1}, \ldots, e_{S}\right\}$.

Construct unary term

- The discrete latent variables are represented using one-hot encodings of each variables $d^{(i)} \in\left\{e_{1}, \ldots, e_{S}\right\}$.

Construct unary term

- The discrete latent variables are represented using one-hot encodings of each variables $d^{(i)} \in\left\{e_{1}, \ldots, e_{S}\right\}$.

Construct unary term

- The discrete latent variables are represented using one-hot encodings of each variables $d^{(i)} \in\left\{e_{1}, \ldots, e_{S}\right\}$.

Construct unary term

- The discrete latent variables are represented using one-hot encodings of each variables $d^{(i)} \in\left\{e_{1}, \ldots, e_{S}\right\}$.

Construct unary term

- The discrete latent variables are represented using one-hot encodings of each variables $d^{(i)} \in\left\{e_{1}, \ldots, e_{S}\right\}$.
- $u_{\theta}^{(i)}$ denotes the vector of the likelihood $\log p_{\theta}\left(x^{(i)} \mid z^{(i)}, e_{k}\right)$ evaluated at each $k \in[S]$.

Alternating minimization scheme

- Our goal is to maximize the variational lower bound of the following objective,

$$
\mathcal{L}(\theta, \phi)=I(x ;[z, d])-\beta \mathbb{E}_{x \sim p(x)} D_{\mathrm{KL}}\left(q_{\phi}(z \mid x) \| p(z)\right)-\lambda D_{\mathrm{KL}}(q(d) \| p(d))
$$

- After rearranging the terms, we arrive at the following optimization problem.

$$
\begin{aligned}
& \underset{\theta, \phi}{\operatorname{maximize}}(\underbrace{\operatorname{maximize}_{d^{(1)}, \ldots d^{(n)}} \sum_{i=1}^{n} u_{\theta}^{(i) \top} d^{(i)}-\lambda^{\prime} \sum_{i \neq j} d^{(i)^{\top}} d^{(j)}}_{:=\mathcal{L}_{L B}(\theta, \phi)}) \\
&-\beta \sum_{i=1}^{n} D_{K L}\left(q_{\phi}\left(z \mid x^{(i)}\right) \| p(z)\right) \\
& \text { subject to } \quad\left\|d^{(i)}\right\|_{1}=1, d^{(i)} \in\{0,1\}^{S}, \forall i,
\end{aligned}
$$

Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^0]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .{ }^{1}$

[^1]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^2]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^3]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^4]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .{ }^{1}$

[^5]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^6]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^7]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .{ }^{1}$

[^8]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^9]
Finding the most likely discrete configuration

- With the unary terms, we solve inner maximization problem $\mathcal{L}_{L B}(\theta, \phi)$ over the discrete variables $\left[d^{(1)}, \ldots, d^{(n)}\right] .^{1}$

[^10]
Finding the most likely discrete configuration

- The maximization problem can be exactly solved in polynomial time via minimum cost flow(mcf) without continuous relaxation. ${ }^{1}$

[^11]
Updating the parameters

Min cost flow solver

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Updating the parameters

- Then, we update the parameters under this discrete configurations.

Outline

Method

Experiments

Conclusion

Notation

- We denote our full method as CascadeVAE.
- We evaluate with disentanglement score introduced in FactorVAE and unsupervised classification accuracy.
- Baselines are β-VAE, JointVAE, FactorVAE

dSprites Dataset Example

- Shape (discrete) : square, ellipse, heart
- Scale: 6 values linearly spaced in $[0.5,1]$
- Orientation: 40 values in $[0,2 \pi]$
- Position X: 32 values in $[0,1]$
- Position Y: 32 values in $[0,1]$

Quantitative results on dSprites

Disentanglement score

Method	m	Mean (std)	Best	Unsupervised classification accuracy			
β VAE							
($\beta=10.0$)	5	70.11 (7.54)	84.62				
$(\beta=4.0)$	10	74.41 (7.68)	88.38				
FactorVAE	5	81.09 (2.63)	85.12	Method	m	Mean (std)	Best
	10	82.15 (0.88)	88.25	JointVAE	6	44.79 (3.88)	53.14
					4	43.99 (3.94)	54.11
JointVAE	6	74.51 (5.17)	$\begin{aligned} & 91.75 \\ & 75.38 \end{aligned}$	CascadeVAE			
	4	73.06 (2.18)	75.38		6 4	$\begin{aligned} & 78.84(15.65) \\ & 76.00(22.16) \end{aligned}$	98.72
CascadeVAE							
$\left(\beta_{l}=1.0\right)$	6	90.49 (5.28)	99.50				
$\left(\beta_{l}=2.0\right)$	4	91.34 (7.36)	98.62				

Outline

Method

Experiments

Conclusion

Conclusion

- Our experiments show that information cascading and alternating maximization of discrete and continuous variables, lead to the state of the art performance in 1) disentanglement score, and 2) classification accuracy.
- The source code is available at https://github.com/snu-mllab/DisentanglementICML19.

Latent dimension traversal in dSprites

β-VAE

FactorVAE

β-VAE

FactorVAE

β-VAE

FactorVAE

JointVAE

JointVAE

JointVAE

JointVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

CascadeVAE

[^0]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^1]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^2]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^3]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^4]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^5]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^6]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^7]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^8]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^9]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^10]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

[^11]: ${ }^{1}$ Jeong, Y . and Song, H. O. "Efficient end-to-end learning for quantizable representations" ICML2018.
 Method

