Multi-objective training of Generative Adversarial Networks with multiple discriminators

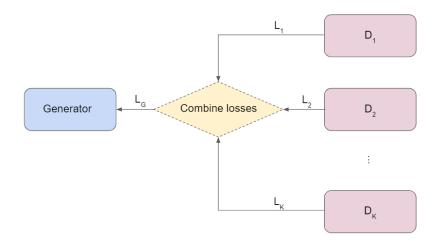
Isabela Albuquerque*, João Monteiro*, Thang Doan, Breandan Considine, Tiago Falk, and Ioannis Mitliagkas

*Equal contribution

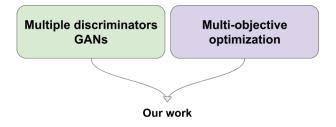
The multiple discriminators GAN setting

- Recent literature proposed to tackle GANs training instability* issues with multiple discriminators (Ds)
 - 1. Generative multi-adversarial networks, Durugkar et al. (2016)
 - 2. Stabilizing GANs training with multiple random projections, Neyshabur et al. (2017)
 - 3. Online Adaptative Curriculum Learning for GANs, Doan et al. (2018)
 - 4. Domain Partitioning Network, Csaba et al. (2019)
 - *Mode-collapse or vanishing gradients

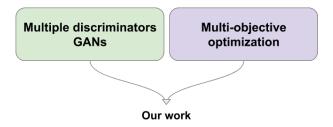
The multiple discriminators GAN setting



Our work



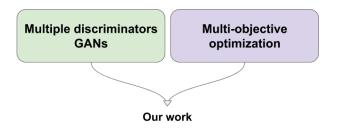
Our work



$$\min \mathcal{L}_G(\mathbf{z}) = [l_1(\mathbf{z}), l_2(\mathbf{z}), ..., l_K(\mathbf{z})]^T$$

► Each I_k = -E_{z∼pz} log D_k(G(z)) is the loss provided by the k-th discriminator

Our work



 $\min \mathcal{L}_G(\mathbf{z}) = [l_1(\mathbf{z}), l_2(\mathbf{z}), ..., l_K(\mathbf{z})]^T$

- Multiple gradient descent (MGD) is a natural choice to solve this problem
 - But it might be too costly
- Alternative: maximize the hypervolume (HV) of a single solution

Multiple gradient descent

- Seeks a Pareto-stationary solution
- Two steps:
 - 1. Find a common descent direction $\forall I_k$

k=1

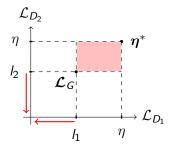
1.1 Minimum norm element within the convex hull of all $\nabla l_k(\mathbf{x})$

2. Update the parameters with $\mathbf{x}_{t+1} = \mathbf{x}_t - \lambda \frac{\mathbf{w}_t^*}{||\mathbf{w}_t^*||}$, where

$$\mathbf{w}_t^* = \operatorname{argmin} ||\mathbf{w}||^2, \quad \mathbf{w} = \sum_{k=1}^K lpha_k
abla I_k(\mathbf{x}_t),$$

s.t. $\sum_{k=1}^K lpha_k = 1, \quad lpha_k \ge 0 \quad \forall k$

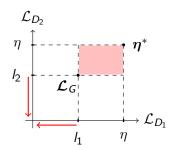
Hypervolume maximization for training GANs



Hypervolume maximization for training GANs

$$\mathcal{L}_{\mathcal{G}} = -\log\left(\prod_{k=1}^{\mathcal{K}} (\eta - I_k)
ight)$$

$$\mathcal{L}_{G} = -\sum_{k=1}^{K} \log(\eta - l_{k})$$



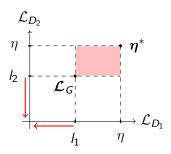
$$\frac{\partial \mathcal{L}_{G}}{\partial \theta} = \sum_{k=1}^{K} \boxed{\frac{1}{\eta - l_{k}}} \frac{\partial l_{k}}{\partial \theta}$$

Hypervolume maximization for training GANs

$$\mathcal{L}_{\mathcal{G}} = -\log\left(\prod_{k=1}^{\mathcal{K}} (\eta - I_k)
ight)$$

$$\mathcal{L}_{G} = -\sum_{k=1}^{K} \log(\eta - l_k)$$

$$\frac{\partial \mathcal{L}_{G}}{\partial \theta} = \sum_{k=1}^{K} \boxed{\frac{1}{\eta - l_{k}}} \frac{\partial l_{k}}{\partial \theta}$$



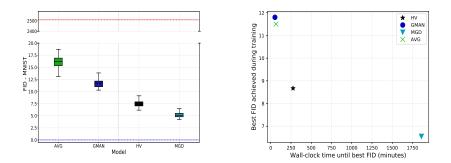
$$\eta^t = \delta \max_k \{I_k^t\}, \quad \delta > 1$$

MGD vs. HV maximization vs. Average loss minimization

- MGD seeks a Pareto-stationary solution
 - $\blacktriangleright \mathbf{x}_{t+1} \prec \mathbf{x}_t$
- HV maximization seeks Pareto-optimal solutions
 - $\blacktriangleright HV(\mathbf{x}_{t+1}) > HV(\mathbf{x}_t)$
 - For the single-solution case, central regions of the Pareto-front are preferred
- Average loss minimization does not enforce equally good individual losses
 - Might be problematic in case there is a trade-off between discriminators

MNIST

- Same architecture, hyperparameters, and initialization for all methods
- 8 Ds, 100 epochs
- FID was calculated using a LeNet trained on MNIST until 98% test accuracy



Upscaled CIFAR-10 - Computational cost

- Different GANs with both 1 and 24 Ds + HV
- Same architecture and initialization for all methods
- Comparison of minimum FID obtained during training, along with computation cost in terms of time and space

	# Disc.	FID-ResNet	FLOPS*	Memory
DCGAN	1	4.22	8e10	1292
	24	1.89	5e11	5671
LSGAN	1	4.55	8e10	1303
	24	1.91	5e11	5682
HingeGAN	1	6.17	8e10	1303
	24	2.25	5e11	5682

* Floating point operations per second

• Additional cost \rightarrow performance improvement

Cats 256×256

Thank you!

Questions? Come to our poster! #4

Code: https://github.com/joaomonteirof/hGAN