Latent Normalizing Flows for Discrete Sequences

Zachary M. Ziegler, Alexander M. Rush

School of Engineering and Applied Sciences, Harvard University

Poster #3 @ Pacific Ballroom

Motivation: Normalizing flows

For invertible $f_{\theta}:\epsilon \to \mathcal{Z}$ and base density $p_{\epsilon}(\epsilon)$,

$$p_Z(\boldsymbol{z}) = p_\epsilon(f_{\theta}^{-1}(\boldsymbol{z})) \left| \det \frac{\partial f_{\theta}^{-1}(\boldsymbol{z})}{\partial \boldsymbol{z}} \right|$$

• Flows generalize autoregressive models for continuous data, allowing increased model flexibility and non-autoregressive generation.

Kingma and Dhariwal 2018, van den Oord et al. 2017, Rezende and Mohamed 2015

Goal: Flows for discrete data

• For discrete sequences MLE autoregressive models are ubiquitous. Can flows go beyond AR models for discrete sequences?

Figure: OpenNMT

Latent Normalizing Flows for Discrete Sequences

Challenges and approach

 Discrete change of variables poses theoretical and practical challenges compared to continuous change of variables.

$$oldsymbol{x} \in \mathcal{V}^T \quad oldsymbol{z} \in \mathcal{R}^{T imes H}$$

- Latent variable model where prior p(z_{1:T}) captures dynamics of discrete data over time.
- Key: weak conditionally independent emission model.
- VAE for inference, optimize ELBO.

Challenges and approach

- Discrete change of variables poses theoretical and practical challenges compared to continuous.
- Oiscrete data is inherently highly multimodal.
- Specialized flows for multimodal sequences:
 - Model dependencies across dimension and across time.

- Discrete change of variables poses theoretical and practical challenges compared to continuous.
- Oiscrete data is inherently highly multimodal.
- Specialized flows for multimodal sequences:
 - Model dependencies across dimension and across time.
 - Replace underlying affine transformation with non-linear transformation.

Experiments: Character-level LM, PTB

Model	Test NLL	Reconst.	KL
LSTM	1.41	-	-
Independent-across-time flow	2.90	0.15	2.77
Autoregressive (\leftarrow)	1.42	0.10	1.37
Autoregressive in time (\leftarrow)	1.46	0.10	1.43
Non-autoregressive $(ightarrow)$	1.63	0.21	1.55

- KL always makes up >90% of loss, indicating continuous flow models vast majority of uncertainty.
- Additional experiments on polyphonic music generation.

- Latent variable model for discrete sequences modeling discrete dynamics in continuous latent space with continuous flows.
- See poster for details of approach, more experimental results, and generation speed comparison.

Poster #3 @ Pacific Ballroom, for details and more experiments