



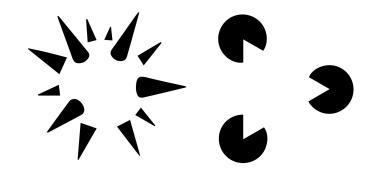


## State Reification Networks

Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Denis Kazakov, Ioannis Mitliagkas, Yoshua Bengio, Michael Mozer

## Reification in Cognitive Psychology

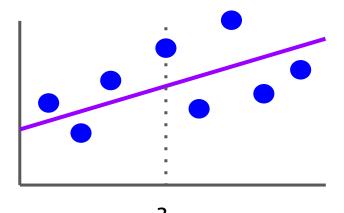
- Human visual perception involves interpreting scenes that can be noisy, missing features, or ambiguous.
- Reification refers to the fact that the output of perception is a coherent whole, not the raw features.





## Reification in Machine Learning

- Models are more useful for prediction than are the raw data.
- If that's true for real-world data, might it also be true for data that originate from within the model (i.e., its hidden states)?
- Reification = exchanging inputs with points that are likely under the model.



## Examples of Reification in Machine Learning

#### Batch normalization

 Performs extremely well, yet only considers 1st and 2nd moments

#### Radial Basis Function Networks

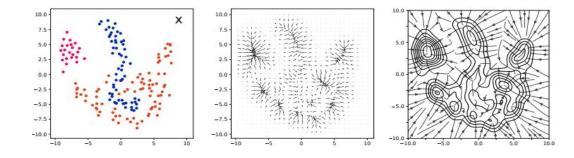
Projects to "prototypes" around each class → very restrictive

#### Generative Classifiers

 Requires extremely strong generative model, poor practical performance

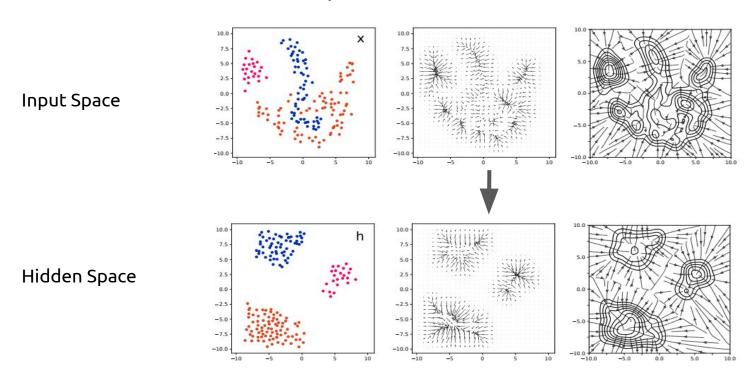
## State Reification

Input Space



## State Reification

• Hidden states can have simpler statistical structure



## Explicit Frameworks for State Reification

- Two frameworks for different model types
  - Denoising Autoencoder (CNNs and RNNs)
  - Attractor Networks (RNNs)

$$\mathcal{L} = \mathcal{L}_{\text{task}}(x, y) + \lambda_{\text{rec}} \mathcal{L}_{\text{rec}}(h)$$

## **Task Overview**

| Architecture | State reification     | Task                                                      |
|--------------|-----------------------|-----------------------------------------------------------|
| CNN          | Denoising autoencoder | Generalization and adversarial robustness                 |
| RNN          | Attractor net         | Parity Majority Function Reber Grammar Sequence Symmetry  |
| RNN          | Denoising autoencoder | Accumulating errors with free running sequence generation |

## **Task Overview**

| Architecture | State reification     | Task                                                      |
|--------------|-----------------------|-----------------------------------------------------------|
| CNN          | Denoising autoencoder | Generalization and adversarial robustness                 |
| RNN          | Attractor net         | Parity Majority Function Reber Grammar Sequence Symmetry  |
| RNN          | Denoising autoencoder | Accumulating errors with free running sequence generation |

## Denoising Autoencoder

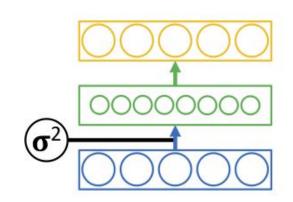
**Input-output mapping DAE** that produces integrated with one hidden layer reified output architecture 0000000 00000000

## Denoising Autoencoder

$$\mathcal{L}_{\text{rec}}(x) = \frac{1}{N} \sum_{n=1}^{N} \left( \left\| r_{\theta} \left( x^{(n)} + a^{(n)} \right) - x^{(n)} \right\|_{2}^{2} \right) \qquad \frac{a^{(n)} \sim \mathbb{N}(\mathbf{0}, \sigma^{2}\mathbf{I})}{r_{\theta} \text{ Learned denoising function.}}$$

$$\frac{r_{\sigma}(x) - x}{\sigma^2} \to \frac{\partial \log p(x)}{\partial x}$$
 as  $\sigma \to 0$ .

(Alain and Bengio, 2012)



## Adversarial Robustness Setup

Projected Gradient Descent Attack (PGD):

$$x^{t+1} = \Pi_{x+S} \left( x^t + \alpha \operatorname{sgn}(\nabla_x \mathcal{L}_{\operatorname{task}}(x, y)) \right)$$

Train with adversarial examples and DAE reconstruction loss:

$$\mathcal{L} = \mathcal{L}_{\mathrm{task}}(x, y) + \mathcal{L}_{\mathrm{task}}(\widetilde{x}, y) + \lambda_{\mathrm{rec}} \sum_{i \in S} \mathcal{L}_{\mathrm{rec}}^{i}(h_{i})$$

## Adversarial Robustness → Improving Generalization

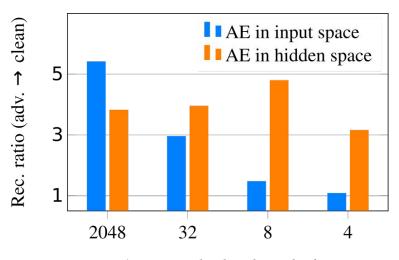
• Improves generalization in adversarial robustness from training set to test set.

|                 | PGD Accuracy | (20 steps) |
|-----------------|--------------|------------|
| Model           | baseline     | SR         |
| PreActResNet18  | 37.87        | 39.20      |
| WideResNet28-10 | 43.28        | 44.06      |

| Attack              | PGD   | Attack         | F    | GD Accu | ıracy  |
|---------------------|-------|----------------|------|---------|--------|
| Type                | Steps | <b>Epsilon</b> | CNN  | CNN+    | CNN+SR |
| Normal              | 7     | 0.03           | 33.0 | 34.2    | 45.0   |
| Normal              | 50    | 0.03           | 31.6 | 32.5    | 42.1   |
| Normal              | 200   | 0.03           | 31.4 | 32.2    | 41.5   |
| Normal              | 100   | 0.03           |      | 35.3    | 39.2   |
| Normal              | 100   | 0.04           |      | 24.8    | 28.0   |
| Normal              | 100   | 0.06           |      | 14.3    | 15.6   |
| Normal              | 100   | 0.08           |      | 12.0    | 13.0   |
| Normal              | 100   | 0.10           |      | 11.7    | 12.9   |
| Normal              | 100   | 0.20           |      | 10.2    | 11.3   |
| Normal              | 100   | 0.30           |      | 8.4     | 9.6    |
| Normal              | 100   | 0.03           |      | 33.4    | 40.1   |
| Noiseless<br>Attack | 100   | 0.03           |      |         | 38.2   |
| BPDA,<br>Skip-DAE   | 100   | 0.03           |      |         | 67.1   |

## Adversarial Robustness - some analysis

- Reconstruction error is larger on adversarial examples.
- When the autoencoder is in the hidden states, this detection doesn't require a high-capacity autoencoder.



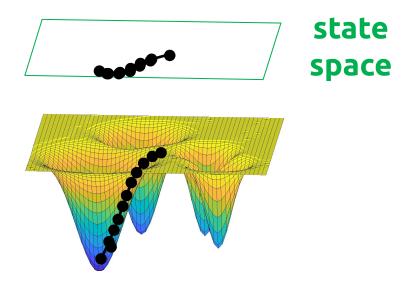
Autoencoder bottleneck size

# **Experiments**

| Architecture | State reification     | Task                                                      |
|--------------|-----------------------|-----------------------------------------------------------|
| CNN          | Denoising autoencoder | Generalization and adversarial robustness                 |
| RNN          | Attractor net         | Parity Majority Function Reber Grammar Sequence Symmetry  |
| RNN          | Denoising autoencoder | Accumulating errors with free running sequence generation |

#### **Attractor Net**

Network whose dynamics can be characterized as moving downhill in energy, arriving at stable point.



## **Attractor Net Dynamics**

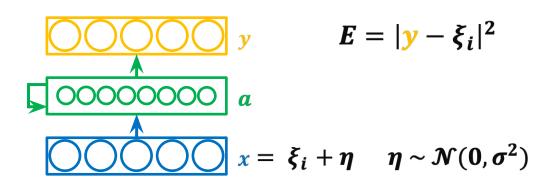
Output 
$$m{y} = anh(m{v_0} + m{U_0}m{a_\infty})$$
Update  $m{a_t} = m{W} anh(m{a_{t-1}}) + m{x^+}$ 
Initialization  $m{a_0} = m{0}$ 
 $m{x^+} = m{v_I} + m{U_I} anh^{-1}(m{x})$ 

To achieve attractor dynamics (Koiran, 1994):

$$w_{ij} = w_{ji}$$
$$w_{ii} \ge 0$$

# Attractor Net Training: Denoising by Convergent Dynamics

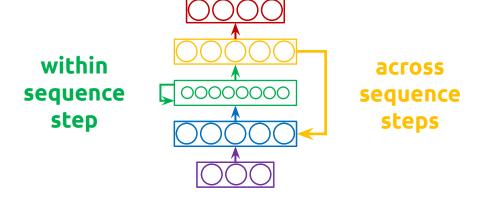
Set of target states  $\{\xi_1, \dots, \xi_n\}$ 



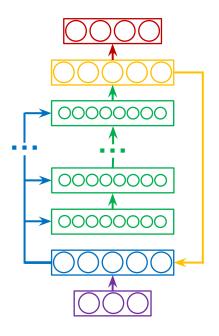
#### **Attractor Nets in RNNs**

- In an imperfectly trained RNN, feedback at each step can inject noise
  - Noise can amplify over time
- Suppose we could 'clean up' the representation at each step to reduce that noise?
  - May lead to better learning and generalization

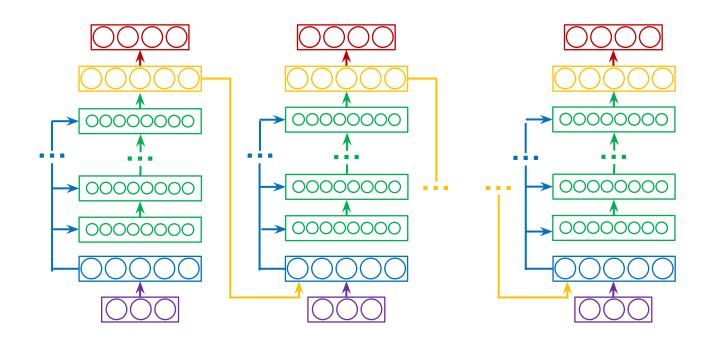
## State-Reified RNN



## **State-Reified RNN**



### State-Reified RNN



## **Training** task loss

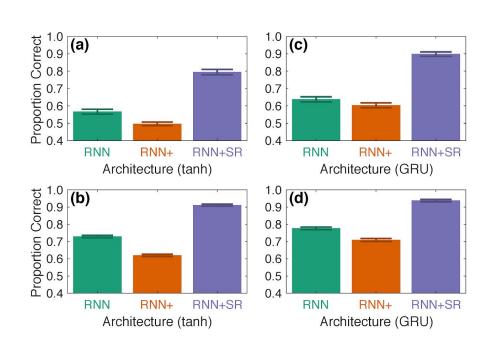
## **Parity Task**

- 10 element sequences
- Training on 256 sequences

1001000101→0 0010101011→1

novel sequences

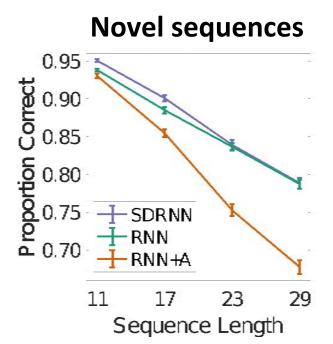
noisy sequences



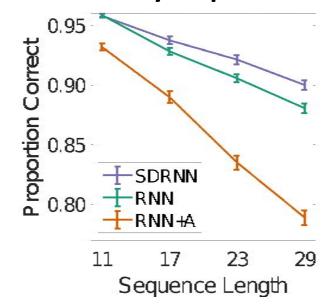
## **Majority Function**

100 sequences, length 11-29

 $01001000101 \rightarrow 0$  $11010111011 \rightarrow 1$ 

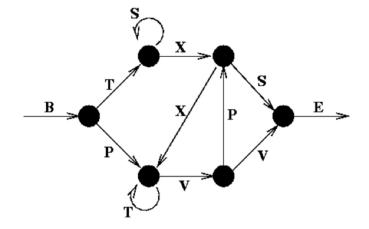




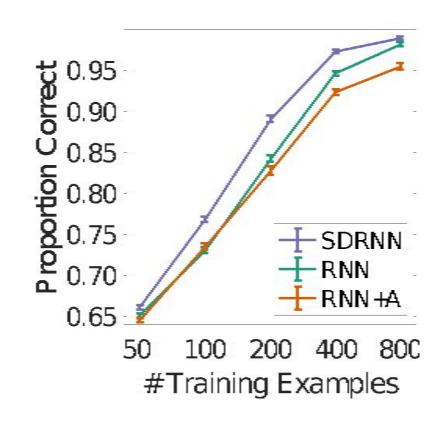


### Reber Grammar

- Orammatical or not?
- Vary training set size



BTTXPVE →0
BPTTVPSE→1

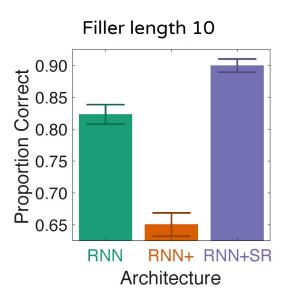


## **Symmetry**

- o Is sequence symmetric?
- 5 symbols, filler, 5 symbols

Filler length 1 1.00 Proportion Correct
0.80
0.80
0.80 0.75 RNN+ RNN+SR RNN Architecture

ACAFBXBFACA  $\rightarrow$  1 ACAFBXBFABA  $\rightarrow$  0



# **Experiments**

| Architecture | State reification     | Task                                                      |
|--------------|-----------------------|-----------------------------------------------------------|
| CNN          | Denoising autoencoder | Generalization and adversarial robustness                 |
| RNN          | Attractor net         | Parity Majority Function Reber Grammar Sequence Symmetry  |
| RNN          | Denoising autoencoder | Accumulating errors with free running sequence generation |

## Identifying Failures in Teacher Forcing

- Train LSTM on character-level Text8 dataset for language modeling.
- Train a denoising autoencoder on the hidden states while doing teacher forcing

| Sampling Steps | Reconstruction Error Ratio |
|----------------|----------------------------|
| 0              | 1.00                       |
| 50             | 1.03                       |
| 180            | 1.12                       |
| 300            | 1.34                       |

## Open Problems

- How well does state reification scale to harder tasks and larger datasets?
- Denoising autoencoders with quadratic loss may not be ideal for reification.
  - Maybe GANs or better generative models could help?
- Thinking about how the states are changed to make reification easier (are these changes ideal or not)?
  - For example, reification might be made easier by having more compressed representations.

## Questions?

• Can also email questions to any of the authors!