Incremental Randomized Sketching for Online Kernel Learning

Xiao Zhang Shizhong Liao*

College of Intelligence and Computing, Tianjin University szliao@tju.edu.cn

June 13, 2019

Xiao Zhang Shizhong Liao (TJU)

Introduction

New Challenges of Online Kernel Learning

- (1) High computational complexities
 - Per-round time complexity depending on T [Calandriello et al., 2017b]
 - Linear space complexity [Calandriello et al., 2017a]
- (2) Lack of theoretical guarantees
 - Lack of sublinear regrets for randomized sketching [Wang et al., 2016]
 - Lack of constant lower bounds on budget/sketch size [Lu et al., 2016]

Main Contribution

Table 1: Comparison with existing online kernel learning approaches (1st order:existing first-order approaches; 2nd order:existing second-order approaches;

	Computational complexities		Theoretical guarantees	
	Time (per round)	Space	Budget/Sketch size	Regret
1st order	Constant	Constant	Linear	Sublinear
2nd order	Sublinear	Linear	Logarithmic	Sublinear
Proposed	Constant	Constant	Constant	Sublinear

Incremental Randomized Sketching Approach

Figure 1: Novel incremental randomized sketching scheme for online kernel learning

• • • • • • • • • • • • •

Incremental Randomized Sketching Approach

Figure 2: The proposed incremental randomized sketching for kernel matrix approximation at round t + 1

Main Results

Incremental Randomized Sketching Theory

Figure 3: The dependence structure of our theoretical results.

- Product preserving property: Statistically unbiased.
- Approximation property: $(1 + \epsilon)$ -relative error bound.
- Regret bound: $O(\sqrt{T})$ regret bound, constant lower bounds of sketch sizes.

Experimental Results

Table 2: Comparison of online kernel learning algorithms in adversarial environments

Algorithm	german-1		german-2			
Algorium	Mistake rate	Time	Mistake rate	Time		
FOGD	37.493 ± 0.724	0.140	32.433 ± 0.196	0.265		
NOGD	30.918 ± 0.003	0.405	26.737 ± 0.002	0.778		
PROS-N-KONS	27.633 ± 0.416	33.984	17.737 ± 0.900	98.873		
SkeGD ($\theta = 0.1$)	17.320 ± 0.136	0.329	7.865 ± 0.059	0.597		
SkeGD ($\theta = 0.01$)	17.272 ± 0.112	0.402	7.407 ± 0.086	0.633		
SkeGD ($\theta = 0.005$)	$\textbf{16.578} \pm \textbf{0.360}$	0.484	7.266 ± 0.065	0.672		
SkeGD ($\theta = 0.001$)	16.687 ± 0.155	1.183	$\textbf{6.835} \pm \textbf{0.136}$	1.856		

Our incremental randomized sketching achieves a better learning performance in terms of accuracy and efficiency even in adversarial environments.

Conclusion

- Novel incremental randomized sketching for online kernel learning.
- Meet the new challenges of online kernel learning.
 - (1) $(1 + \epsilon)$ -relative error bound.
 - (2) Sublinear regret bound under constant lower bounds of the sketch size.
 - (3) Constant per-round computational complexities.
- A sketch scheme for both online and offline large-scale kernel learning.

Main References

[Calandriello et al., 2017a] Calandriello, D., Lazaric, A., and Valko, M. (2017a). Efficient second-order online kernel learning with adaptive embedding.

In Advances in Neural Information Processing Systems 30, pages 6140–6150.

[Calandriello et al., 2017b] Calandriello, D., Lazaric, A., and Valko, M. (2017b). Second-order kernel online convex optimization with adaptive sketching.

In Proceedings of the 34th International Conference on Machine Learning, pages 645–653.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

[Lu et al., 2016] Lu, J., Hoi, S. C., Wang, J., Zhao, P., and Liu, Z. (2016). Large scale online kernel learning.

Journal of Machine Learning Research, 17:1613–1655.

[Wang et al., 2016] Wang, S., Zhang, Z., and Zhang, T. (2016). Towards more efficient SPSD matrix approximation and CUR matrix decomposition. *Journal of Machine Learning Research*, 17:1–49.

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで