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Introduction

New Challenges of Online Kernel Learning

(1) High computational complexities

Per-round time complexity depending on T [Calandriello et al., 2017b]
Linear space complexity [Calandriello et al., 2017a]

(2) Lack of theoretical guarantees

Lack of sublinear regrets for randomized sketching [Wang et al., 2016]
Lack of constant lower bounds on budget/sketch size [Lu et al., 2016]
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Introduction

Main Contribution

Table 1: Comparison with existing online kernel learning approaches (1st order:
existing first-order approaches; 2nd order: existing second-order approaches)

Computational complexities Theoretical guarantees
Time (per round) Space Budget/Sketch size Regret

1st order Constant Constant Linear Sublinear

2nd order Sublinear Linear Logarithmic Sublinear

Proposed Constant Constant Constant Sublinear
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Main Results

Incremental Randomized Sketching Approach
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Figure 1: Novel incremental randomized sketching scheme for online kernel learning
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Main Results

Incremental Randomized Sketching Approach
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Figure 2: The proposed incremental randomized sketching for kernel matrix
approximation at round t + 1

Xiao Zhang Shizhong Liao (TJU) ICML 2019 June 13, 2019 6 / 11



Main Results

Incremental Randomized Sketching Theory

Low-Rank 
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Figure 3: The dependence structure of
our theoretical results.

Product preserving property:

Statistically unbiased.

Approximation property:

(1 + ε)-relative error bound.

Regret bound:

O(
√

T) regret bound,
constant lower bounds of sketch
sizes.
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Main Results

Experimental Results

Table 2: Comparison of online kernel learning algorithms in adversarial environments

Algorithm
german-1 german-2

Mistake rate Time Mistake rate Time
FOGD 37.493 ± 0.724 0.140 32.433 ± 0.196 0.265
NOGD 30.918 ± 0.003 0.405 26.737 ± 0.002 0.778
PROS-N-KONS 27.633 ± 0.416 33.984 17.737 ± 0.900 98.873
SkeGD (θ = 0.1) 17.320 ± 0.136 0.329 7.865 ± 0.059 0.597
SkeGD (θ = 0.01) 17.272 ± 0.112 0.402 7.407 ± 0.086 0.633
SkeGD (θ = 0.005) 16.578 ± 0.360 0.484 7.266 ± 0.065 0.672
SkeGD (θ = 0.001) 16.687 ± 0.155 1.183 6.835 ± 0.136 1.856

Our incremental randomized sketching achieves a better learning performance in
terms of accuracy and efficiency even in adversarial environments.
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Conclusion

Novel incremental randomized sketching for online kernel learning.

Meet the new challenges of online kernel learning.

(1) (1 + ε)-relative error bound.
(2) Sublinear regret bound under constant lower bounds of the sketch size.
(3) Constant per-round computational complexities.

A sketch scheme for both online and offline large-scale kernel learning.
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