
Matrix-Free Preconditioning in Online
Learning
Ashok Cutkosky, Tamas Sarlos
Google Research



Online Optimization

For t = 1 . . . T , repeat:

1: Learner chooses a point wt .

2: Environment presents learner with a gradient gt (think
E[gt ] = ∇F (wt)).

3: Learner su�ers loss 〈gt ,wt〉.
The objective is minimize regret:

RT (w?) =
T∑

t=1

〈gt ,wt〉︸ ︷︷ ︸
loss su�ered

− 〈gt ,w?〉︸ ︷︷ ︸
benchmark loss

Running an online algorithm on a stochastic optimization problem
guarantees F (wT )− F (w?) ≤ RT (w?)

T .

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 1 of 20



Online Optimization

For t = 1 . . . T , repeat:

1: Learner chooses a point wt .

2: Environment presents learner with a gradient gt (think
E[gt ] = ∇F (wt)).

3: Learner su�ers loss 〈gt ,wt〉.
The objective is minimize regret:

RT (w?) =
T∑

t=1

〈gt ,wt〉︸ ︷︷ ︸
loss su�ered

− 〈gt ,w?〉︸ ︷︷ ︸
benchmark loss

Running an online algorithm on a stochastic optimization problem
guarantees F (wT )− F (w?) ≤ RT (w?)

T .

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 1 of 20



The Classic Algorithm: Gradient Descent

wt+1 = wt − ηtgt

Gradient descent obtains regret:

RT (w?) ≤

√√√√ T∑
t=1

‖w?‖2‖gt‖2

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 2 of 20



The Classic Algorithm: Gradient Descent

wt+1 = wt − ηtgt
Gradient descent obtains regret:

RT (w?) ≤

√√√√ T∑
t=1

‖w?‖2‖gt‖2

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 2 of 20



Gradient Descent

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 3 of 20



Preconditioning (Deterministic)

• The gradient∇F (w) may not point towards the minimum w?

Key idea: “Preconditioning” means ignoring irrelevant directions.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 4 of 20



Preconditioning (Deterministic)

• The gradient∇F (w) may not point towards the minimum w?

Key idea: “Preconditioning” means ignoring irrelevant directions.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 4 of 20



Preconditioning (Stochastic)

• Noise can also make gt not point towards the minimum.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 5 of 20



Regret Bounds

• Regret of un-preconditioned stochastic gradient descent (with the
appropriate learning rate) is

RT (w?) ≤

√√√√ T∑
t=1

‖w?‖2‖gt‖2 = O
(√

T
)

• An ideal preconditioned algorithm should obtain regret

RT (w?) ≤

√√√√ T∑
t=1

〈w?, gt〉2 = O
(√

T
)

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 6 of 20



Regret Bound Picture

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 7 of 20



Goals

• Want regret bound as good as if we had ignored irrelevant directions
(up to constants/logs)

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 8 of 20



Using the Covariance Matrix

The typical approach to preconditioning maintains the matrix

G =
T∑

t=1

gtg>t

and compute various inverses and square roots of G. This can obtain the
guarantee [CO18; KL17]

RT (w?) ≤

√√√√d
T∑

t=1

〈w?, gt〉2

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 9 of 20



Issues with Using Covariance Matrix

• d2 time is too slow - there’s a lot of work on compressing the matrix to
try to make some tradeo� [Luo+16; GKS18; Aga+18].

• The regret bound might not even be be�er!√√√√d
T∑

t=1

〈w?, gt〉2
�
≤

√√√√‖w?‖2
T∑

t=1

‖gt‖2

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 10 of 20



Issues with Using Covariance Matrix

• d2 time is too slow - there’s a lot of work on compressing the matrix to
try to make some tradeo� [Luo+16; GKS18; Aga+18].

• The regret bound might not even be be�er!√√√√d
T∑

t=1

〈w?, gt〉2
�
≤

√√√√‖w?‖2
T∑

t=1

‖gt‖2

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 10 of 20



Goals

1: Want regret bound as good as if we had ignored irrelevant directions
(up to constants/logs).

2: Want an e�icient algorithm (O(d) time per update in d-dimensions).

3: Want to never do worse than non-preconditioned algorithms.

• We will achieve 2 and 3, and sometimes 1.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 11 of 20



Goals

1: Want regret bound as good as if we had ignored irrelevant directions
(up to constants/logs).

2: Want an e�icient algorithm (O(d) time per update in d-dimensions).

3: Want to never do worse than non-preconditioned algorithms.

• We will achieve 2 and 3, and sometimes 1.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 11 of 20



Our Contribution

We provide an online learning algorithm that:

• Runs in O(d) time per-update.

• Always achieves regret:

RT (w?) ≤ ‖w?‖

√√√√ T∑
t=1

‖gt‖2

• When −〈
∑T

t=1 gt ,w?/‖w?‖〉 ≥
√∑T

t=1 ‖gt‖2, achieves:

RT (w?) ≤

√√√√ T∑
t=1

〈w?, gt〉2

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 12 of 20



Unpacking the Condition

• We need −〈
∑T

t=1 gt ,w?/‖w?‖〉 ≥
√∑T

t=1 ‖gt‖2 for preconditioned
regret.

• If gt are mean-zero independent random variables, then standard
concentration results say:

−

〈
T∑

t=1

gt ,w?/‖w?‖

〉
≤

∥∥∥∥∥
T∑

t=1

gt

∥∥∥∥∥ = Θ


√√√√ T∑

t=1

‖gt‖2



We achieve preconditioning whenever there is any “signal” in the
gradients.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 13 of 20



Unpacking the Condition

• We need −〈
∑T

t=1 gt ,w?/‖w?‖〉 ≥
√∑T

t=1 ‖gt‖2 for preconditioned
regret.

• If gt are mean-zero independent random variables, then standard
concentration results say:

−

〈
T∑

t=1

gt ,w?/‖w?‖

〉
≤

∥∥∥∥∥
T∑

t=1

gt

∥∥∥∥∥ = Θ


√√√√ T∑

t=1

‖gt‖2


We achieve preconditioning whenever there is any “signal” in the

gradients.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 13 of 20



Coin Be�ing [OP16]

• Define wealth:

WealthT = 1−
T∑

t=1

〈gt ,wt〉

• High wealth implies low regret:

RT (w?) = 1−
T∑

t=1

〈gt ,w?〉︸ ︷︷ ︸
out of our control

−WealthT

• At every iteration, choose a be�ing fraction vt ∈ Rd and use

wt = vtWealtht−1

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 14 of 20



Coin Be�ing [OP16]

• Define wealth:

WealthT = 1−
T∑

t=1

〈gt ,wt〉

• High wealth implies low regret:

RT (w?) = 1−
T∑

t=1

〈gt ,w?〉︸ ︷︷ ︸
out of our control

−WealthT

• At every iteration, choose a be�ing fraction vt ∈ Rd and use

wt = vtWealtht−1

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 14 of 20



Coin Be�ing [OP16]

• Define wealth:

WealthT = 1−
T∑

t=1

〈gt ,wt〉

• High wealth implies low regret:

RT (w?) = 1−
T∑

t=1

〈gt ,w?〉︸ ︷︷ ︸
out of our control

−WealthT

• At every iteration, choose a be�ing fraction vt ∈ Rd and use

wt = vtWealtht−1

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 14 of 20



Oracle value for v yields good algorithm

Set vt = v? ≈ w?

‖w?‖
√∑T

t=1〈gt ,w?〉2
. Then

RT (w?) ≤

√√√√ T∑
t=1

〈w?, gt〉2

• There are no matrices here!

• But we don’t know this magic value for v .

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 15 of 20



Online Learning Inside Online Learning [CO18]

• Define `t(v) = − log(1− 〈gt , v〉). Then:

Rv
T (v?) :=

T∑
t=1

`t(vt)− `t(v?)

• If Rv
T (v?) = O(log(T )), then the final regret RT (w?) is the same as if

we’d used the constant vt = v?.

• We can use online learning to choose the vt !

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 16 of 20



Online Learning Inside Online Learning [CO18]

• Define `t(v) = − log(1− 〈gt , v〉). Then:

Rv
T (v?) :=

T∑
t=1

`t(vt)− `t(v?)

• If Rv
T (v?) = O(log(T )), then the final regret RT (w?) is the same as if

we’d used the constant vt = v?.

• We can use online learning to choose the vt !

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 16 of 20



Overview of Algorithm Strategy

• There exists an unknown v? that would give preconditioned regret.

• We can choose vt using online convex optimization on losses
`t(v) = − log(1− 〈gt , vt〉).

• If we get Rv
T (v?) =

∑T
t=1 `t(vt)− `t(v?) = O(log(T )), then we are as

good as picking v? from the beginning.

• So how can we obtain logarithmic regret?

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 17 of 20



How to obtain logarithmic regret?

• Strategy: Remember that the constant v? we need to compete with is
v? = w?

‖w?‖
√∑T

t=1〈gt ,w?〉2
, so ‖v?‖ = O(1/

√
T ) usually.

• This means that we can use a non-preconditioned online learning
algorithm to obtain logarithmic regret:

Rv
T (v?) ≤ ‖v?‖

√
T = O(1)

• Sometimes the best v is not small - this is why we do not always
obtain preconditioned regret.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 18 of 20



How to obtain logarithmic regret?

• Strategy: Remember that the constant v? we need to compete with is
v? = w?

‖w?‖
√∑T

t=1〈gt ,w?〉2
, so ‖v?‖ = O(1/

√
T ) usually.

• This means that we can use a non-preconditioned online learning
algorithm to obtain logarithmic regret:

Rv
T (v?) ≤ ‖v?‖

√
T = O(1)

• Sometimes the best v is not small - this is why we do not always
obtain preconditioned regret.

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 18 of 20



Experiments

0 50000 100000 150000 200000 250000 300000
Steps

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350
Te

st
 a

cc
ur

ac
y

Adam
Adagrad
Recursive
Recursive+Momentum

Test accuracy on LM1B dataset with Transformer model

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 19 of 20



Summary

• When the gradients are “obviously non-random”, we obtain
preconditioned regret bounds without any bad

√
d constant factors.

• Otherwise, we decay to the ordinary non-preconditioned regret
bounds (actually, we improve log factors).

• The algorithm runs in the same time complexity as ordinary gradient
descent.

• The empirical performance is promising.

Thank you!

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 20 of 20



Summary

• When the gradients are “obviously non-random”, we obtain
preconditioned regret bounds without any bad

√
d constant factors.

• Otherwise, we decay to the ordinary non-preconditioned regret
bounds (actually, we improve log factors).

• The algorithm runs in the same time complexity as ordinary gradient
descent.

• The empirical performance is promising.

Thank you!

Ashok Cutkosky, Tamas Sarlos Matrix-Free Preconditioning in Online Learning 20 of 20


	How it works

