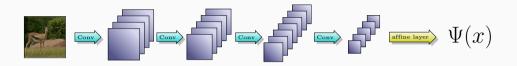


On the Connection Between Adversarial Robustness and Saliency Map Interpretability

Christian Etmann^{*,1,3}, Sebastian Lunz^{*,2}, Peter Maass¹, Carola-Bibiane Schönlieb² 13th June, 2019

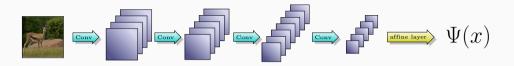
1: ZeTeM, University of Bremen, 2: Cambridge Image Analysis, University of Cambridge, 3: Work done at Cambridge

Saliency Maps



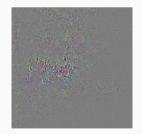
For a logit $\Psi^{i}(x)$, we call its gradient $\nabla \Psi^{i}(x)$ the *saliency map* in *x*. It *should* show us the discriminative portions of the image.

Saliency Maps



For a logit $\Psi^{i}(x)$, we call its gradient $\nabla \Psi^{i}(x)$ the *saliency map* in *x*. It *should* show us the discriminative portions of the image.

Original Image



Saliency map of a ResNet50

An Unexplained Phenomenon

Models trained to be more robust to adversarial attacks seem to exhibit 'interpretable' saliency ${\sf maps}^1$

Original Image

Saliency map of a robustified ResNet50

¹Tsipras et al, 2019: 'Robustness may be at odds with accuracy.'

An Unexplained Phenomenon

Models trained to be more robust to adversarial attacks seem to exhibit 'interpretable' saliency ${\sf maps}^1$

Original Image

Saliency map of a robustified ResNet50

This phenomenon has a remarkably simple explanation!

¹Tsipras et al, 2019: 'Robustness may be at odds with accuracy.'

We call

$$\rho(x) = \inf_{e \in X} \{ \|e\| : F(x+e) \neq F(x) \}$$

the *adversarial robustness* of the classifier F (with respect to euclidean norm $\|\cdot\|$).

• Adversarial attacks are tiny perturbations that 'fool' the classifier

We call

$$\rho(x) = \inf_{e \in X} \{ \|e\| : F(x+e) \neq F(x) \}$$

the *adversarial robustness* of the classifier F (with respect to euclidean norm $\|\cdot\|$).

- Adversarial attacks are tiny perturbations that 'fool' the classifier
- $\bullet\,$ A higher robustness to these attacks \Rightarrow greater distance to the decision boundary

We call

$$\rho(x) = \inf_{e \in X} \{ \|e\| : F(x+e) \neq F(x) \}$$

the *adversarial robustness* of the classifier F (with respect to euclidean norm $\|\cdot\|$).

- Adversarial attacks are tiny perturbations that 'fool' the classifier
- A higher robustness to these attacks \Rightarrow greater distance to the decision boundary
- A larger distance to the decision boundary results in a lower angle between x and $\nabla \Psi^i(x)$

We call

$$\rho(x) = \inf_{e \in X} \{ \|e\| : F(x+e) \neq F(x) \}$$

the *adversarial robustness* of the classifier F (with respect to euclidean norm $\|\cdot\|$).

- Adversarial attacks are tiny perturbations that 'fool' the classifier
- A higher robustness to these attacks \Rightarrow greater distance to the decision boundary
- A larger distance to the decision boundary results in a lower angle between x and $\nabla \Psi^i(x)$
- We perceive this as a higher visual alignment between image and saliency map

We call

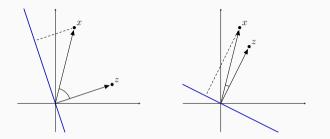
$$\rho(x) = \inf_{e \in X} \{ \|e\| : F(x+e) \neq F(x) \}$$

the *adversarial robustness* of the classifier F (with respect to euclidean norm $\|\cdot\|$).

- Adversarial attacks are tiny perturbations that 'fool' the classifier
- A higher robustness to these attacks \Rightarrow greater distance to the decision boundary
- A larger distance to the decision boundary results in a lower angle between x and $\nabla \Psi^i(x)$
- We perceive this as a higher visual alignment between image and saliency map

... but not quite

A Simple Toy Example



First, we consider a linear, binary classifier

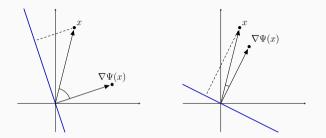
$$F(x) = \operatorname{sgn}(\Psi(x)),$$

where $\Psi(x) := \langle x, z \rangle$ for some z. Then

$$p(x) = \frac{|\langle x, z \rangle|}{\|z\|} = \frac{|\langle x, \nabla \Psi(x) \rangle|}{\|\nabla \Psi(x)\|}.$$

Note that $\rho(x) = ||x|| \cdot |\cos(\delta)|$, where δ is the angle between x and z.

A Simple Toy Example



First, we consider a linear, binary classifier

$$F(x) = \operatorname{sgn}(\Psi(x)),$$

where $\Psi(x) := \langle x, z \rangle$ for some *z*. Then

$$\rho(x) = rac{|\langle x, z
angle|}{\|z\|} = rac{|\langle x, \nabla \Psi(x)
angle|}{\|\nabla \Psi(x)\|}.$$

Note that $\rho(x) = ||x|| \cdot |\cos(\delta)|$, where δ is the angle between x and z.

Definition (Alignment)

Let $\Psi = (\Psi^1, \dots, \Psi^n) : X \to \mathbb{R}^n$ be differentiable in x. Then for an *n*-class classifier defined a.e. by $F(x) = \arg \max_i \Psi^i(x)$, we call $\nabla \Psi^{F(x)}$ the saliency map of F. We further call

$$\alpha(x) := \frac{|\langle x, \nabla \Psi^{F(x)}(x) \rangle|}{\|\nabla \Psi^{F(x)}(x)\|}$$

the alignment with respect to Ψ in x.

For binary, linear models by construction: $\rho(x) = \alpha(x)$

Definition (Alignment)

Let $\Psi = (\Psi^1, \dots, \Psi^n) : X \to \mathbb{R}^n$ be differentiable in x. Then for an *n*-class classifier defined a.e. by $F(x) = \arg \max_i \Psi^i(x)$, we call $\nabla \Psi^{F(x)}$ the saliency map of F. We further call

$$\alpha(x) := \frac{|\langle x, \nabla \Psi^{F(x)}(x) \rangle|}{\|\nabla \Psi^{F(x)}(x)\|}$$

the alignment with respect to Ψ in x.

For binary, linear models by construction: $\rho(x) = \alpha(x)$ but already wrong for affine models.

There is no closed expression for robustness. One idea is to linearize.

Definition (Linearized Robustness)

Let $\Psi(x)$ be the differentiable score vector for the classifier F in x. We call

$$ilde{
ho}(x) := \min_{j \neq i^*} rac{\Psi^{i^*}(x) - \Psi^j(x)}{\|
abla \Psi^{i^*}(x) -
abla \Psi^j(x) \|},$$

the *linearized robustness* in x, where $i^* := F(x)$ is the predicted class at point x.

Bridging the Gap Between Linearized Robustness and Alignment

Using

- a homogeneous decomposition theorem
- the 'binarization' of our classifier

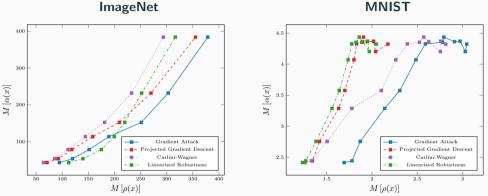
we get

Theorem (Bound for general models)

Let $g := \nabla \Psi^{i^*}(x)$. Furthermore, let $g^{\dagger} := \nabla \Psi^{\dagger}_x(x)$ and β^{\dagger} the non-homogeneous portion of Ψ^{\dagger}_x . Denote by \bar{v} the $\|\cdot\|$ -normed $v \neq 0$. Then

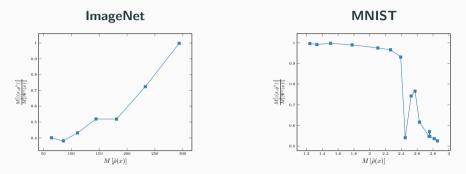
$$\widetilde{
ho}(x) \leq lpha(x) + \|x\| \cdot \|\overline{g}^{\dagger} - \overline{g}\| + rac{|eta^{\dagger}|}{\|g^{\dagger}\|}.$$

Experiments: Robustness vs. Alignment



- Linearized robustness is a reasonable approximation
 - Alignment increases with robustness
 - Superlinear growth for ImageNet and saturating effect on MNIST

Experiments: Explaining the Observations



Fraction of homogeneous part of logit

- The degree of homogeneity largely determines how strong the connection between α and $\tilde{\rho}$ is
- ImageNet: higher robustness + more homogeneity = superlinear growth
- MNIST: higher robustness + less homogeneity = effects start cancelling out

Thank you and see you at the poster! Pacific Ballroom, #70