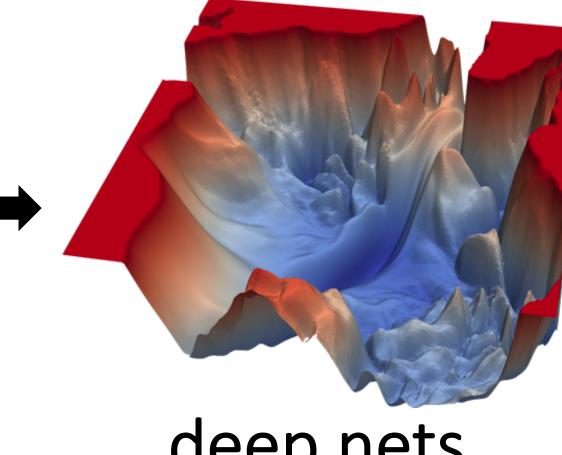
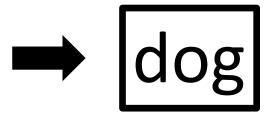
Functional Transparency for Structured Data: a Game-Theoretic Approach

Guang-He Lee, Wengong Jin, David Alvarez Melis, and Tommi S. Jaakkola

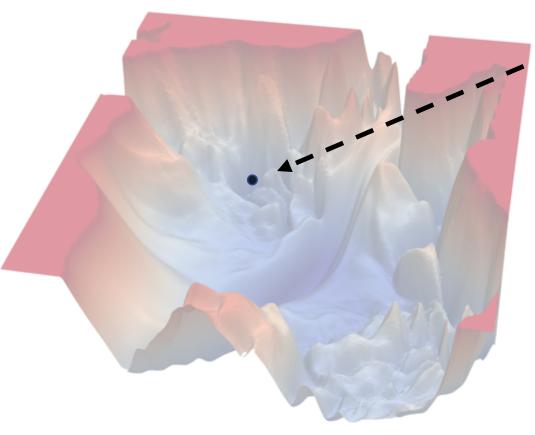
Goal: understand the (complex) network





deep nets

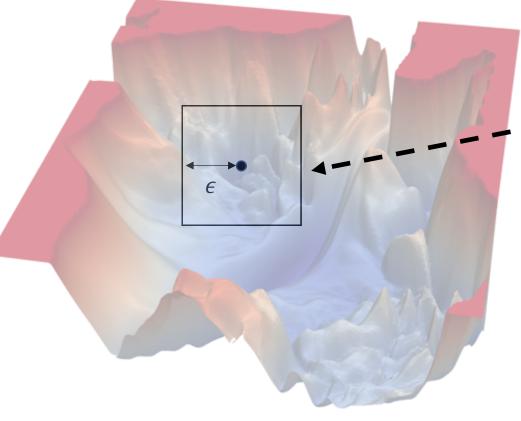
Img: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/



Deep nets

-1. Given an example x_i

Img: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

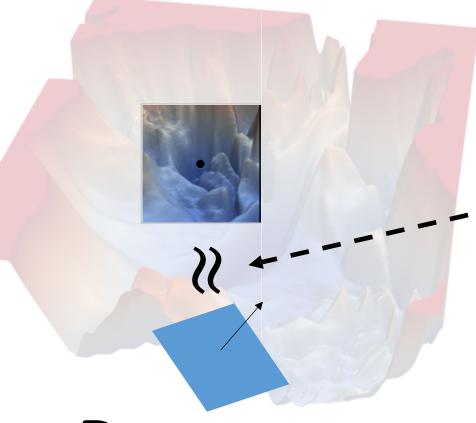


1. Given an example x_i

-2. choose a neighborhood $\mathcal{B}(x_i)$

Deep nets

Img: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

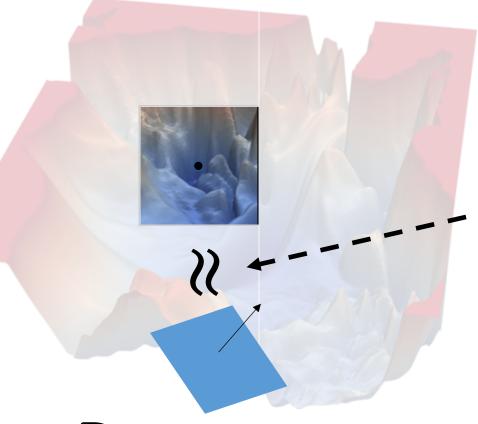


1. Given an example x_i

2. choose a neighborhood $\mathcal{B}(x_i)$

- 3. Find a simple approximation
- e.g., linear model, decision tree.

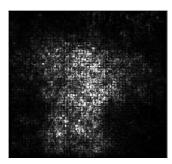
Deep nets



1. Given an example x_i

2. choose a neighborhood $\mathcal{B}(x_i)$

- 3. Find a simple approximation
 - e.g., linear model, decision tree.

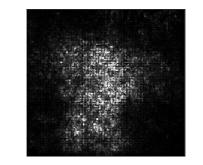


Deep nets

Post-hoc explanations are not stable

Input 1

Explanation 1

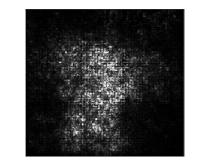


(Alvarez-Melis & Jaakkola, 18', Ghorbani et al., 19')

Post-hoc explanations are not stable

Input 1

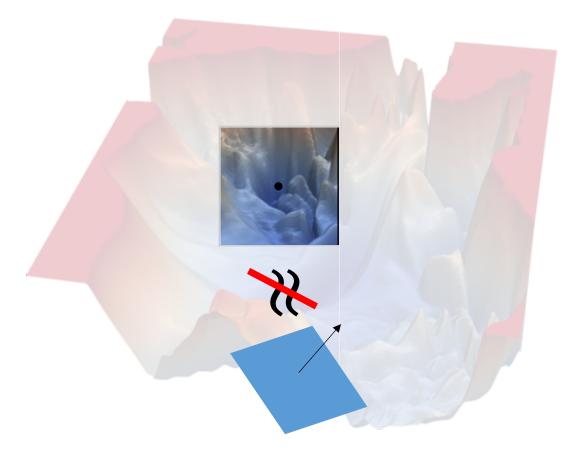
Explanation 1



Input 2

(Alvarez-Melis & Jaakkola, 18', Ghorbani et al., 19')

Reason: the network does not operate as the desired explanation



stability, transparency, ...

stability, transparency, ...

 $\Box \supset \mathcal{G}$:the set of functions with desired property

stability, transparency, ...

 $\Box \supset \mathcal{G}$:the set of functions with desired property

- example for transparency: linear model, decision tree

stability, transparency, ...

 $\bigcirc \mathcal{G} \text{ :the set of functions with desired property} \\ \bigcirc \min_{g \in \mathcal{G}} \frac{1}{|\mathcal{B}(x_i)|} \sum_{x_j \in \mathcal{B}(x_i)} d(f(x_j), g(x_j)) \\ Degree \text{ to which the property is enforced on } f \text{ around } x_i. \end{cases}$

stability, transparency, ...

 $\Box > \mathcal{G} \text{:the set of functions with desired property} \\ \Box > \min_{g \in \mathcal{G}} \frac{1}{|\mathcal{B}(x_i)|} \sum_{x_j \in \mathcal{B}(x_i)} d(f(x_j), g(x_j))$

Degree to which the property is enforced on f around x_i .

Functional property enforcement

For each x_i , the witness \hat{g}_{x_i} measures the enforcement

$$\hat{g}_{x_i} = \underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \sum_{x_j \in \mathcal{B}(x_i)} d(\hat{f}(x_j), g(x_j))$$

Functional property enforcement

For each x_i , the witness \hat{g}_{x_i} measures the enforcement

$$\hat{g}_{x_i} = \underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \sum_{x_j \in \mathcal{B}(x_i)} d(\hat{f}(x_j), g(x_j))$$

We regularize the predictor \hat{f} towards agreement

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{(x_i, y_i) \in \mathcal{D}} \left[\mathcal{L}(f(x_i), y_i) + \lambda \, d(f(x_i), \hat{g}_{x_i}(x_i)) \right]$$

Functional property enforcement

A co-operative game:

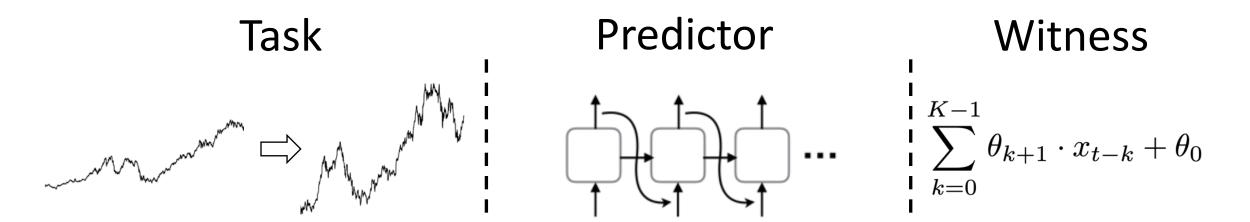
$$\begin{cases} \hat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{\substack{(x_i, y_i) \in \mathcal{D} \\ g_{x_i} = \operatorname{arg\,min}}} \left[\mathcal{L}(f(x_i), y_i) + \lambda \ d(f(x_i), \hat{g}_{x_i}(x_i)) \right] \\ \hat{g}_{x_i} = \underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \sum_{\substack{x_j \in \mathcal{B}(x_i)}} d(\hat{f}(x_j), g(x_j)) \end{cases}$$

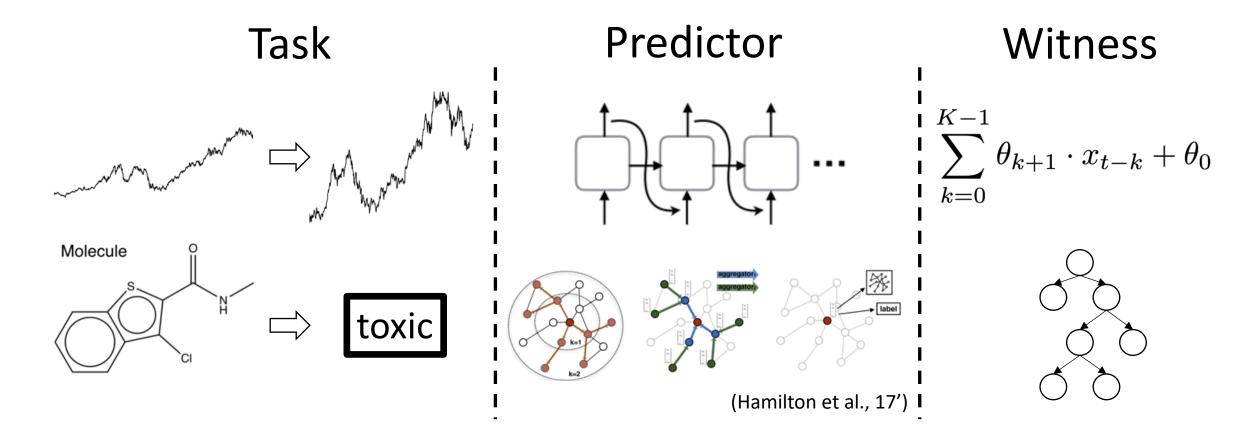
The asymmetry leads to efficiency in optimization. (see the paper for more details)

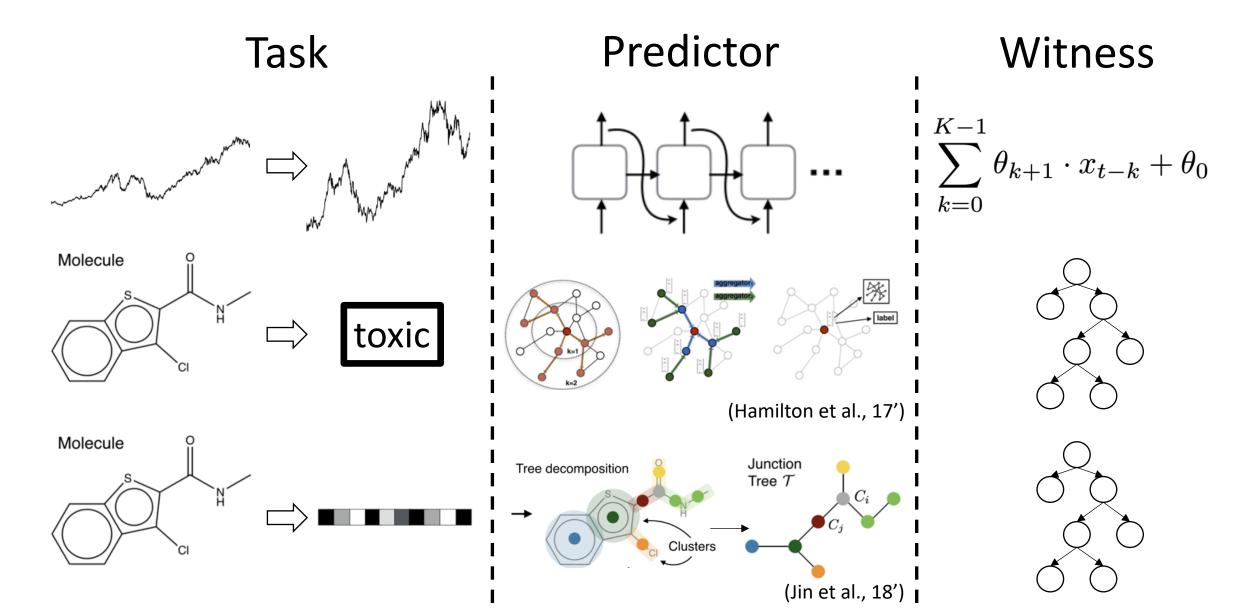
Task

Predictor

Witness





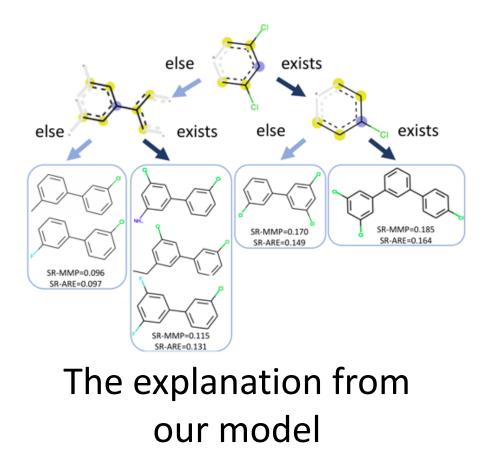


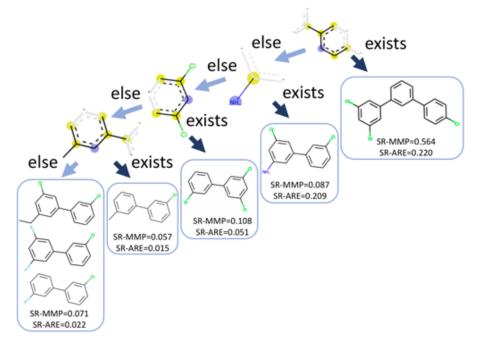
Empirical study

- we can measure transparency based on deviation between predictor and explainer.

Aspect	Measure	Game	Deep
Performance	AUC(f, y)	0.826	0.815
Transparency	$ \operatorname{AUC}(\hat{g}_{\mathcal{M}}, f) $	0.967	0.922

Models trained w/ this approach yield more compact explanations





The explanation from a normal model

Poster:

- 06:30 -- 09:00 PM @ Pacific Ballroom #64
- Details and analysis about the framework

Related work on functional transparency: Towards Robust, Locally Linear Deep Networks, ICLR 19'