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Unreliable Network
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Sharing Gradients Won’t Work



Reliable Parameter Server (RPS)

High Level: Share Models
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t j ∈ �̃�(i)
t

v(i,j)
t j ∉ �̃�(i)

t
.

Model Update:
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Assumptions:

p: Package Dropping RateT: Total Iterations

     Non Convex, with L-Lipschitz Gradient; f(x)
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Bounded Data Variance

Bounded Dataset Difference



Experiments
16 NVIDIA TITAN Xp GPUs, ResNet-110 on CIFAR-10

RPS is Robust Standard SGD is Vulnerable 
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(a) ResNet20 - CIFAR10
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(b) ResNet110 - CIFAR10 (c) LSTM - ATIS

Figure 4: Convergence of RPS on different datasets.

of 0.02 using ResNet110 and 0.09 for ResNet20. Dropping
1% doesn’t increase the training loss achieved after 160
epochs. For 5% the training loss is identical on ResNet110
and increased by 0.02 on ResNet20. Having a probability of
90% of arrival leads to a training loss of 0.03 for ResNet110
and 0.11 for ResNet20 respectively.

Convergence of NLU We perform full convergence tests
for the NLU task on the ATIS corpus and a single layer
LSTM. Figure 4(c) shows the result. The baseline achieves
a training loss of 0.01. Dropping 1, 5 or 10 percent of the
communicated partial vectors result in an increase of 0.01
in training loss.

Comparison with Gradient Averaging We conduct exper-
iments with identical setup and a probability of 99 percent of
arrival using a gradient averaging methods, instead of model
averaging. When running data distributed SGD, gradient
averaging is the most widely used technique in practice,
also implemented by default in most deep learning frame-
works(Abadi et al., 2016; Seide & Agarwal, 2016). As
expected, the baseline (all the transmissions are success-
ful) convergences to the same training loss as its model
averaging counterpart, when omitting momentum and regu-
larization terms. As seen in figures 5(a,b), having a loss in
communication of even 1 percentage results in worse con-
vergence in terms of accuracy for both ResNet architectures
on CIFAR-10. The reason is that the error of package drop
will accumulate over iterations but never decay, because the
model is the sum of all early gradients, so the model never
converges to the optimal one. Nevertheless, this insight sug-
gests that one should favor a model averaging algorithm over
gradient averaging, if the underlying network connection is
unreliable.

7. Case study: Speeding up Colocated

Applications

Our results on the resilience of distributed learning to losses
of model updates open up an interesting use case. That
model updates can be lost (within some tolerance) with-
out the deterioration of model convergence implies that
model updates transmitted over the physical network can be
de-prioritized compared to other more “inflexible,” delay-
sensitive traffic, such as for Web services. Thus, we can
colocate other applications with the training workloads, and
reduce infrastructure costs for running them. Equivalently,
workloads that are colocated with learning workers can ben-
efit from prioritized network traffic (at the expense of some
model update losses), and thus achieve lower latency.

To demonstrate this in practice, we perform a packet simula-
tion over 16 servers, each connected with a 1 Gbps link to a
network switch. Over this network of 16 servers, we run two
workloads: (a) replaying traces from the machine learning
process of ResNet110 on CIFAR-10 (which translates to a
load of 2.4 Gbps) which is sent unreliably, and (b) a simple
emulated Web service running on all 16 servers. Web ser-
vices often produce significant background traffic between
servers within the data center, consisting typically of small
messages fetching distributed pieces of content to compose
a response (e.g., a Google query response potentially con-
sists of advertisements, search results, and images). We
emulate this intra data center traffic for the Web service as
all-to-all traffic between these servers, with small messages
of 100 KB (a reasonable size for such services) sent reli-
ably between these servers. The inter-arrival time for these
messages follows a Poisson process, parametrized by the
expected message rate, � (aggregated across the 16 servers).

Different degrees of prioritization of the Web service traffic
over learning traffic result in different degrees of loss in
learning updates transmitted over the network. As the Web
service is prioritized to a greater extent, its performance
improves – its message exchanges take less time; we re-
fer to this reduction in (average) completion time for these
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(a) ResNet20 - CIFAR10
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(b) ResNet110 - CIFAR10 (c) LSTM - ATIS

Figure 5: Why RPS? The Behavior of Standard SGD in the Presence of Message Drop.

Figure 6: Allowing an increasing rate of losses
for model updates speeds up the Web service.

Figure 7: Allowing more losses for model updates
reduces the cost for the Web service.

messages as a speed-up. Note that even small speedups of
10% are significant for such services; for example, Google
actively pursues minimizing its Web services’ response la-
tency. An alternative method of quantifying the benefit for
the colocated Web service is to measure how many addi-
tional messages the Web service can send, while maintaining
a fixed average completion time. This translates to running
more Web service queries and achieving more throughput
over the same infrastructure, thus reducing cost per request
/ message.

Fig. 6 and Fig. 7 show results for the above described
Web service speedup and cost reduction respectively. In
Fig. 6, the arrival rate of Web service messages is fixed
(� = {2000, 5000, 10000} per second). As the network
prioritizes the Web service more and more over learning
update traffic, more learning traffic suffers losses (on the x-
axis), but performance for the Web service improves. With
just 10% losses for learning updates, the Web service can
be sped up by more than 20% (i.e., 1.2⇥).

In Fig. 7, we set a target average transmission time (2, 5,
or 10 ms) for the Web service’s messages, and increase the
message arrival rate, �, thus causing more and more losses
for learning updates on the x-axis. But accommodating
higher � over the same infrastructure translates to a lower
cost of running the Web service (with this reduction shown
on the y-axis).

Thus, tolerating small amounts of loss in model update
traffic can result in significant benefits for colocated services,
while not deteriorating convergence.

8. Conclusion

In this paper, we present a novel analysis for a general model
of distributed machine learning, under a realistic unreliable
communication model. We present a novel theoretical analy-
sis for such a scenario, and evaluated it while training neural
networks on both image and natural language datasets. We
also provided a case study of application collocation, to
illustrate the potential benefit that can be provided by al-
lowing learning algorithms to take advantage of unreliable
communication channels.
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