Distributed Learning over Unreliable Networks

Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing, Ankit Singla, Dan Alistarh, Ce Zhang, Ji Liu

Presenter: Chen Yu

Institute of Science and Technology

AllReduce SGD

Unreliable Network

Sharing Gradients Won't Work

Reliable Parameter Server (RPS)

High Level: Share Models

Local Partition:

$$v_t^{(i)} = x_t^{(i)} - \gamma g_t^{(i)}, \quad v_t^{(i)} = \left(\left(v_t^{(i,1)} \right)^{\mathsf{T}}, \left(v_t^{(i,2)} \right)^{\mathsf{T}}, \cdots, \left(v_t^{(i,n)} \right)^{\mathsf{T}} \right)^{\mathsf{T}}$$

Robust Averaging:

$$\tilde{v}_t^{(i)} = \frac{1}{|\mathcal{N}_t^{(i)}|} \sum_{j \in \mathcal{N}_t^{(j)}} v_t^{(i,j)}$$

Model Update:

$$x_{t+1}^{(i,j)} = \begin{cases} \tilde{v}_t^{(j)} & j \in \tilde{\mathcal{N}}_t^{(i)} \\ v_t^{(i,j)} & j \notin \tilde{\mathcal{N}}_t^{(i)} \end{cases}.$$

Convergence Rate

Assumptions:

Experiments

16 NVIDIA TITAN Xp GPUs, ResNet-110 on CIFAR-10

Thanks

Welcome to Pacific Ballroom #97 to see the poster for more detail