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Partitional clustering and k-means
• Given a representation of n observations and a measure of similarity,

seek an optimal partition C = {C1, . . . ,Ck} into k groups
• X ∈ Rd×n denotes n datapoints, θ ∈ Rd×k represent k centers
• k-means: assign each observation to the cluster represented by the

nearest center, minimizing within-cluster variance

argmin
C

k∑
j=1

∑
x∈Cj

‖x − θj‖2 = argmin
C

k∑
j=1

|Cj |Var(Cj)

2



Lloyd’s algorithm (1957)

Greedy approach: seeks local minimizer of k-means objective, rewritten

n∑
i=1

min
1≤j≤k

‖x i − θj‖2 := f−∞(θ)

1. Update label assignments: C
(m)
j = {x i : θ

(m)
j is closest center}

2. Recompute centers by averaging: θ
(m+1)
j =

1

|C (m)
j |

∑
x i∈C (m)

j

x i

Simple yet effective, remains most widely used clustering algorithm
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Issues even when implicit assumptions are met
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Drawbacks of Lloyd’s algorithm

Even in ideal settings, Lloyd’s algorithm is prone to local minima

• Sensitive to initialization, gets trapped in poor solutions, worsens in
high dimensions

• Objective is non-smooth, highly non-convex

• “External” improvements: good initialization schemes (k-means++)

Goal: an “internal” improvement that retains the simplicity of Lloyd’s
algorithm, and seeks to optimize the same measure of quality

Solution: annealing along a continuum of smooth surfaces via
majorization-minimization
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A geometric approach: k-harmonic means (2001)

H(x1, . . . , xk) =
(

1
k

∑k
j=1 x

−1
j

)−1
as a proxy for min(x1, . . . , xk)

Zhang et al. propose instead minimizing the criterion
n∑

i=1

( 1

k

k∑
j=1

‖x i − θj‖−2
)−1

:= f−1(θ)
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A member of the power means family

Class of power means: Ms(z) =
(

1
k

∑k
i=1 z

s
i

) 1
s

for zi ∈ (0,∞)

• s = 1 yields arithmetic mean, s = −1 yields harmonic mean, etc

• Continuous, symmetric, homogeneous, strictly increasing

• Will be useful to generalize the good intuition behind KHM

Classical mathematical results ⇒ nice algorithmic properties

1. Well-known lim
s→−∞

Ms(z1, . . . , zk) = min{z1, . . . , zk}

2. Power mean inequality Ms(z1, . . . , zk) ≤ Mt(z1, . . . , zk), s ≤ t
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From power means to clustering criteria

Recall Ms(z) =
(

1
k

∑k
i=1 z

s
i

) 1
s

f−1(θ) =
n∑

i=1

( 1

k

k∑
j=1

‖x i − θj‖−2
)−1

(KHM)

• substitute zj = ‖x i − θj‖2 into M−1(z), sum over i

f−∞(θ) =
n∑

i=1

min
1≤j≤k

‖x i − θj‖2 (k-means)

• the same, substituting instead into “M−∞(z)”

What about all the other power means?
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A continuum of smoother objectives

Figure: A cross-section of the k-means objective −f−∞(θ) with k = 3
clusters in dimension d = 1. Third center is fixed at its true value.
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A continuum of smoother objectives

(a) s = −10.0 (b) s = −1.0 (KHM)
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A continuum of smoother objectives

(c) s = −0.2 (d) s = 0.3
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Gradually approaching the k-means criterion

Proposition: For any {s(m)} → −∞, lim
m→∞

min
θ

fs(m)(θ) = min
θ

f−∞(θ).

• Choosing one instance (i.e. f−1) as proxy may not always be a good
idea, now interpreted as early stopping along solution path

• Starting at s(0) < 1, gradually decreasing s → −∞ can be
understood as a form of annealing
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Toward an iterative solution: majorization-minimization

A surrogate g(θ | θm) is said to majorize the function f (θ) at θm if

f (θm) = g(θm | θm) tangency at θm

f (θ) ≤ g(θ | θm) domination for all θ.

MM algorithm: iterates θm+1 = argmin
θ

g(θ | θn)

• Example: Expectation-Maximization (EM) is an example of MM

• Lloyd’s algorithm can be considered EM for Gaussian mixtures with
limiting σ2 → 0
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Illustration of MM algorithm
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By all means, k-means

· Same O(nkd) time complexity as Lloyd; one additional parameter s(0)

Proposition: For any decreasing sequence s(m) ≤ 1, the iterates θ(m)

produced by Algorithm 1 generates a decreasing sequence of objective
values fs(m)(θ(m)) bounded below by 0. As a consequence, the sequence
of objective values converges.
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The shape of power means to come

Gradient has a nice form:
∂

∂zj
Ms(z1, . . . , zk) =

( 1
k

k∑
i=1

z si

) 1
s
−1 1

k
z s−1
j

Quadratic form of Hessian (not shown) shows that Ms(z) is concave for s ≤ 1

This means that whenever s ≤ 1, the following inequality holds:

Ms(z1, . . . , zk) ≤ Ms(z
(m)
1 , . . . , z

(m)
k ) +

k∑
j=1

∂

∂zj
Ms(z

(m)
1 , . . . , z

(m)
k )(zj − z

(m)
j )
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Minimizing power means objectives

Let w
(m)
ij = ∂

∂θj
Ms(‖x i − θ

(m)
1 ‖2, . . . , ‖x i − θ

(m)
k ‖2) for a given value θ(m)

fs(θ) =
n∑

i=1

Ms(θ; x i ) ≤

C (m)︷ ︸︸ ︷
n∑

i=1

(
Ms(θ(m); x i ) +

k∑
j=1

w
(m)
ij ‖x i − θ

(m)
j ‖

)
+
∑n

i=1

∑k
j=1 w

(m)
ij ‖x i − θj‖2 := g(θ | θ(m))

Unlike objective fs(θ), the right-hand side g(θ | θ(m)) is easy to minimize!

0 = −2
n∑

i=1

w
(m)
ij (x i − θj), θ̂j =

1∑n
i=1 w

(m)
ij

n∑
i=1

w
(m)
ij x i .

15



Analogous experiment in KHM paper when d = 2

16



Performance comparison

Table: Variation of information under k-means++ initialization

d = 2 d = 5 d = 10 d = 20 d = 50 d = 100 d = 200

Lloyd 0.637 0.261 0.234 0.223 0.199 0.206 0.183
KHM 0.651 0.328 0.339 0.319 0.263 0.280 0.231
s0=-1 (0.593) (0.199) 0.133 0.136 0.084 0.087 0.069
−3 0.593 0.226 (0.111) (0.069) (0.022) (0.027) 0.026
−9 0.608 0.252 0.199 0.169 0.078 0.036 (0.026)
−18 0.615 0.259 0.218 0.208 0.140 0.101 0.077

Power k-means performs best for all choices of s(0) under good seedings!
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Performance comparison

Table: Root k-means quality ratio with k-means++ initialization

d = 2 d = 5 d = 10 d = 20 d = 50 d = 100 d = 200

Lloyd 1.036 1.236 1.363 1.411 1.476 1.492 1.481
KHM 1.044 1.290 1.473 1.504 1.556 1.586 1.556
s0=-1 (1.029) (1.164) 1.185 1.221 1.178 1.181 1.149
−3 1.030 1.187 (1.155) (1.110) (1.044) (1.054) (1.059)
−9 1.032 1.220 1.293 1.296 1.192 1.086 1.069
−18 1.034 1.228 1.328 1.370 1.351 1.254 1.203

Other measures such as adjusted Rand index convey the same trends
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Closing remarks

• KHM degrades rapidly as d increases, and its benefits become less
noticeable even in the plane with the availability of good seedings

• Power k-means succeeds in settings where Lloyd’s and KHM break
down, despite “ideal” setting

• Speed: power k-means takes ≈ 50 iterations (≈ 20 seconds) on
MNIST with n = 60 000, d = 784

• Convergence rates ⇒ optimal annealing schedules, choices of s(0)?

• Bregman and other non-Euclidean extensions
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Thank you!

Poster #96

jason.q.xu@duke.edu // jasonxu90.github.io
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