A Composite Randomized Incremental Gradient Method

Junyu Zhang (University of Minnesota) and
Lin Xiao (Microsoft Research)

International Conference on Machine Learning (ICML)
Long Beach, California
June 11, 2019

Composite finite-sum optimization

- problem of focus

$$
\operatorname{minimize}_{x \in \mathbf{R}^{d}} f\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)\right)+r(x)
$$

$-f: \mathbf{R}^{p} \rightarrow \mathbf{R}$ smooth and possibly nonconvex
$-g_{i}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{p}$ smooth vector mapping, $i=1, \ldots, n$
$-r: \mathbf{R}^{d} \rightarrow \mathbf{R} \cup\{\infty\}$ convex but possibly nonsmooth

Composite finite-sum optimization

- problem of focus

$$
\operatorname{minimize}_{x \in \mathbf{R}^{d}} f\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)\right)+r(x)
$$

- $f: \mathbf{R}^{p} \rightarrow \mathbf{R}$ smooth and possibly nonconvex
$-g_{i}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{p}$ smooth vector mapping, $i=1, \ldots, n$
$-r: \mathbf{R}^{d} \rightarrow \mathbf{R} \cup\{\infty\}$ convex but possibly nonsmooth
- extensions for two-level finite-sum problem

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{minimize}} \frac{1}{m} \sum_{j=1}^{m} f_{j}\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)\right)+r(x)
$$

- applications beyond ERM
- reinforcement learning (policy evaluation)
- risk-averse optimization, financial mathematics

Examples

- policy evaluation with linear function approximation

$$
\operatorname{minimize}_{x \in \mathbf{R}^{d}}\|\mathbf{E}[A] x-\mathbf{E}[b]\|^{2}
$$

A, b random, generated by MDP under fixed policy

Examples

- policy evaluation with linear function approximation

$$
\operatorname{minimize}_{x \in \mathbf{R}^{d}}\|\mathbf{E}[A] x-\mathbf{E}[b]\|^{2}
$$

A, b random, generated by MDP under fixed policy

- risk-averse optimization

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{maximize}} \underbrace{\frac{1}{n} \sum_{j=1}^{n} h_{j}(x)}_{\text {average reward }}-\lambda \underbrace{\frac{1}{n} \sum_{j=1}^{n}\left(h_{j}(x)-\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)\right)^{2}}_{\text {variance of rewards (risk) }}
$$

- often treated as two-level composite finite-sum optimization

Examples

- policy evaluation with linear function approximation

$$
\operatorname{minimize}_{x \in \mathbf{R}^{d}}\|\mathbf{E}[A] x-\mathbf{E}[b]\|^{2}
$$

A, b random, generated by MDP under fixed policy

- risk-averse optimization

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{maximize}} \underbrace{\frac{1}{n} \sum_{j=1}^{n} h_{j}(x)}_{\text {average reward }}-\lambda \underbrace{\frac{1}{n} \sum_{j=1}^{n}\left(h_{j}(x)-\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)\right)^{2}}_{\text {variance of rewards (risk) }}
$$

- often treated as two-level composite finite-sum optimization
- simple transformation using $\operatorname{Var}(a)=\mathbf{E}\left[a^{2}\right]-(\mathbf{E}[a])^{2}$

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{maximize}} \frac{1}{n} \sum_{j=1}^{n} h_{j}(x)-\lambda\left(\frac{1}{n} \sum_{j=1}^{n} h_{j}^{2}(x)-\left(\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)\right)^{2}\right)
$$

actually a one-level composite finite-sum problem

Technical challenge and related work

- challenge: biased gradient estimator
- denote $F(x):=f(g(x))$ where $g(x):=\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)$

$$
F^{\prime}(x)=\left[g^{\prime}(x)\right]^{T} f^{\prime}(g(x))
$$

- subsampled estimators

$$
y=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} g_{i}(x), \quad z=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} g_{i}^{\prime}(x), \quad \text { where } \mathcal{S} \subset\{1, \ldots, n\}
$$

$$
\mathbf{E}[y]=g(x) \text { and } \mathbf{E}[z]=g^{\prime}(x), \text { but } \mathbf{E}\left[[z]^{T} f^{\prime}(y)\right] \neq F^{\prime}(x)
$$

Technical challenge and related work

- challenge: biased gradient estimator
- denote $F(x):=f(g(x))$ where $g(x):=\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)$

$$
F^{\prime}(x)=\left[g^{\prime}(x)\right]^{T} f^{\prime}(g(x))
$$

- subsampled estimators

$$
\begin{aligned}
& y=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} g_{i}(x), \quad z=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} g_{i}^{\prime}(x), \quad \text { where } \mathcal{S} \subset\{1, \ldots, n\} \\
& \mathbf{E}[y]=g(x) \text { and } \mathbf{E}[z]=g^{\prime}(x), \text { but } \mathbf{E}\left[[z]^{T} f^{\prime}(y)\right] \neq F^{\prime}(x)
\end{aligned}
$$

- related work
- more general composite stochastic optimization (Wang, Fang \& Liu 2017; Wang, Liu \& Fang 2017; ...)
- two-level composite finite-sum: extending SVRG (Lien, Wang \& Liu 2017; Hoo, Gu, Liu \& Huang 2018; Lin, Fan, Wang \& Jordan 2018; ...)

Main results

- composite-SAGA: single loop vs double loops of composite-SVRG

Main results

- composite-SAGA: single loop vs double loops of composite-SVRG
- sample complexity for $\mathbf{E}\left[\left\|\mathcal{G}\left(x_{t}\right)\right\|^{2}\right] \leq \epsilon$ (with $\mathcal{G}=F^{\prime}$ if $r \equiv 0$)
- nonconvex smooth f and $g_{i}: O\left(n+n^{2 / 3} \epsilon^{-1}\right)$
- + gradient dominant or strongly convex: $O\left(\left(n+\kappa n^{2 / 3}\right) \log \epsilon^{-1}\right)$
same as SVRG/SAGA for nonconvex finite-sum problems (Allen-Zhu \& Hazan 2016; Reddi et al. 2016; Let et al. 2017)

Main results

- composite-SAGA: single loop vs double loops of composite-SVRG
- sample complexity for $\mathbf{E}\left[\left\|\mathcal{G}\left(x_{t}\right)\right\|^{2}\right] \leq \epsilon$ (with $\mathcal{G}=F^{\prime}$ if $r \equiv 0$)
- nonconvex smooth f and $g_{i}: O\left(n+n^{2 / 3} \epsilon^{-1}\right)$
- + gradient dominant or strongly convex: $O\left(\left(n+\kappa n^{2 / 3}\right) \log \epsilon^{-1}\right)$
same as SVRG/SAGA for nonconvex finite-sum problems
(Allen-Zhu \& Hazan 2016; Reddi et al. 2016; Let et al. 2017)
- extensions to two-level problem
- nonconvex smooth f and $g_{i}: O\left(m+n+(m+n)^{2 / 3} \epsilon^{-1}\right)$ (same as composite-SVRG (Hoo et al. 2018))
$-\quad+$ gradient dominant or optimally strongly convex:

$$
O\left(\left(m+n+\kappa(m+n)^{2 / 3}\right) \log \epsilon^{-1}\right)
$$

(better than composite-SVRG (Lien et al. 2017))

Composite SAGA algorithm (C-SAGA)

- input: $x^{0} \in \mathbf{R}^{d}, \alpha_{i}^{0}$ for $i=1, \ldots, n$, and step size $\eta>0$
- initialize $Y_{0}=\frac{1}{n} \sum_{i=1}^{n} g_{i}\left(\alpha_{i}^{0}\right), \quad Z_{0}=\frac{1}{n} \sum_{i=1}^{n} g_{i}^{\prime}\left(\alpha_{i}^{0}\right)$
- for $t=0, \ldots, T-1$
- sample with replacement $\mathcal{S}_{t} \subset\{1, \ldots, n\}$ with $\left|\mathcal{S}_{t}\right|=s$
- compute $\left\{\begin{array}{l}y_{t}=Y_{t}+\frac{1}{s} \sum_{j \in \mathcal{S}_{t}}\left(g_{j}\left(x^{t}\right)-g_{j}\left(\alpha_{j}^{t}\right)\right) \\ z_{t}=Z_{t}+\frac{1}{s} \sum_{j \in \mathcal{S}_{t}}\left(g_{j}^{\prime}\left(x^{t}\right)-g_{j}^{\prime}\left(\alpha_{j}^{t}\right)\right)\end{array}\right.$
$-x^{t+1}=\operatorname{prox}_{r}^{\eta}\left(x^{t}-\eta\left(z_{t}^{T} f^{\prime}\left(y_{t}\right)\right)\right)$
- update $\alpha_{j}^{t+1}=x^{t}$ if $j \in \mathcal{S}_{t}$ and $\alpha_{j}^{t+1}=\alpha_{j}^{t}$ otherwise
- update $\left\{\begin{array}{l}Y_{t+1}=Y_{t}+\frac{1}{n} \sum_{j \in \mathcal{S}_{t}}\left(g_{j}\left(x^{t}\right)-g_{j}\left(\alpha_{j}^{t}\right)\right) \\ Z_{t+1}=Z_{t}+\frac{1}{n} \sum_{j \in \mathcal{S}_{t}}\left(g_{j}^{\prime}\left(x^{t}\right)-g_{j}^{\prime}\left(\alpha_{j}^{t}\right)\right)\end{array}\right.$
- output: randomly choose $t_{*} \in\{1, \ldots, T\}$ and output $x^{t_{*}}$

Convergence analysis

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{minimize}} \underbrace{f\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)\right)}_{F(x)}+r(x)
$$

- assumptions
- f is ℓ_{f}-Lipschitz and f^{\prime} is L_{f}-Lipschitz
- g_{i} is ℓ_{g}-Lipschitz and g_{i}^{\prime} is L_{g}-Lipschitz, $i=1, \ldots, n$
- r convex but can be non-smooth
implication: F^{\prime} is L_{F}-Lipschitz with $L_{F}=\ell_{g}^{2} L_{f}+\ell_{f} L_{g}$

Convergence analysis

$$
\operatorname{minimize}_{x \in \mathbf{R}^{d}} \underbrace{f\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)\right)}_{F(x)}+r(x)
$$

- assumptions
- f is ℓ_{f}-Lipschitz and f^{\prime} is L_{f}-Lipschitz
$-g_{i}$ is ℓ_{g}-Lipschitz and g_{i}^{\prime} is L_{g}-Lipschitz, $i=1, \ldots, n$
- r convex but can be non-smooth
implication: F^{\prime} is L_{F}-Lipschitz with $L_{F}=\ell_{g}^{2} L_{f}+\ell_{f} L_{g}$
- sample complexity for $\mathbf{E}\left[\left\|\mathcal{G}\left(x_{t}\right)\right\|^{2}\right] \leq \epsilon$, where

$$
\mathcal{G}(x)=\frac{1}{\eta}\left(x-\operatorname{prox}_{r}^{\eta}\left(x-\eta F^{\prime}(x)\right)\right)=F^{\prime}(x) \text { if } r \equiv 0
$$

- if $s=1$ and $\eta=O\left(1 /\left(n L_{F}\right)\right)$, then complexity $O(n / \epsilon)$
- if $s=n^{2 / 3}$ and $\eta=O\left(1 / L_{F}\right)$, then complexity $O\left(n+n^{2 / 3} / \epsilon\right)$

Linear convergence results

- gradient-dominant functions
- assumption: $r \equiv 0$ and $F(x):=f\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)\right)$ satisfies

$$
F(x)-\inf _{y} F(y) \leq \frac{\nu}{2}\left\|F^{\prime}(x)\right\|^{2}, \quad \forall x \in \mathbf{R}^{d}
$$

- if $s=n^{2 / 3}$ and $\eta=O\left(1 / L_{F}\right)$, complexity $O\left(\left(n+\nu n^{2 / 3}\right) \log \epsilon^{-1}\right)$
- optimally strongly convex functions
- assumption: $\Phi(x):=F(x)+r(x)$ satisfies

$$
\Phi(x)-\Phi\left(x_{\star}\right) \geq \frac{\mu}{2}\left\|x-x_{\star}\right\|^{2}, \quad \forall x \in \mathbf{R}^{d}
$$

- if $s=n^{2 / 3}$ and $\eta=O\left(1 / L_{F}\right)$, complexity $O\left(\left(n+\mu^{-1} n^{2 / 3}\right) \log \epsilon^{-1}\right)$
- extension to two-level case: $O\left(\left(m+n+\kappa(m+n)^{2 / 3}\right) \log \epsilon^{-1}\right)$

Experiments

- risk-averse optimization

- policy evaluation for MDP

