Lower Bounds for Smooth Nonconvex Finite-Sum Optimization

Dongruo Zhou Quanquan Gu

Computer Science Department University of California, Los Angeles

Problem Setup

Nonconvex finite-sum optimization:

$$\min_{\mathbf{x}\in\mathbb{R}^d} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}).$$

 $ightarrow F(\mathbf{x})$ is of (l, L)-smoothness, $l \in \mathbb{R}$ and L > 0,

$$\frac{l}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le F(\mathbf{x}) - F(\mathbf{y}) - \langle \nabla F(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_2^2, \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

Problem Setup

Nonconvex finite-sum optimization:

$$\min_{\mathbf{x}\in\mathbb{R}^d} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}).$$

 $\triangleright \ F(\mathbf{x}) \text{ is of } (l, L) \text{-smoothness, } l \in \mathbb{R} \text{ and } L > 0,$ $l = \frac{l}{2} \left(\sum_{i=1}^{n} \frac{1}{2} \left($

$$\frac{l}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le F(\mathbf{x}) - F(\mathbf{y}) - \langle \nabla F(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_2^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

Optimization goals:

 \triangleright For $l \ge 0$, the goal is to find an ϵ -suboptimal solution $\widehat{\mathbf{x}}$,

$$F(\widehat{\mathbf{x}}) - \inf_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \le \epsilon.$$

 \triangleright For l < 0, the goal is to find an ϵ -stationary point $\widehat{\mathbf{x}}$,

 $\|\nabla F(\widehat{\mathbf{x}})\|_2 \le \epsilon.$

Definitions

• Optimization oracle: Incremental First-order Oracle (IFO)

 \triangleright Given $\mathbf{x} \in \mathbb{R}^d$ and $i \in [n]$, an IFO returns $[f_i(\mathbf{x}), \nabla f_i(\mathbf{x})]$.

Definitions

- **Optimization oracle:** Incremental First-order Oracle (IFO)
- \triangleright Given $\mathbf{x} \in \mathbb{R}^d$ and $i \in [n]$, an IFO returns $[f_i(\mathbf{x}), \nabla f_i(\mathbf{x})]$.
- ► Algorithm class: Linear-span first-order randomized algorithms
- \triangleright Given an initial point $\mathbf{x}^{(0)}$.
- $\triangleright \ \mathcal{A}: \{f_i\}_{i=1}^n \to \{\mathbf{x}_t, i_t\}_{t=0}^\infty \text{ is defined as a measurable mapping from functions } \{f_i\}_{i=1}^n \text{ to an infinite sequence of point and index pairs } \{\mathbf{x}_t, i_t\}_{t=0}^\infty \text{ with random index } i_t \in [n], \text{ which satisfies }$

$$\mathbf{x}^{(t+1)} \in \mathsf{Lin}\{\mathbf{x}^{(0)}, ..., \mathbf{x}^{(t)}, \nabla f_{i_0}(\mathbf{x}^{(0)}), ..., \nabla f_{i_t}(\mathbf{x}^{(t)})\}.$$

Definitions

- **Optimization oracle:** Incremental First-order Oracle (IFO)
- \triangleright Given $\mathbf{x} \in \mathbb{R}^d$ and $i \in [n]$, an IFO returns $[f_i(\mathbf{x}), \nabla f_i(\mathbf{x})]$.
- ► Algorithm class: Linear-span first-order randomized algorithms
- \triangleright Given an initial point $\mathbf{x}^{(0)}$.
- $\triangleright \ \mathcal{A}: \{f_i\}_{i=1}^n \to \{\mathbf{x}_t, i_t\}_{t=0}^\infty \text{ is defined as a measurable mapping from functions } \{f_i\}_{i=1}^n \text{ to an infinite sequence of point and index pairs } \{\mathbf{x}_t, i_t\}_{t=0}^\infty \text{ with random index } i_t \in [n], \text{ which satisfies }$

$$\mathbf{x}^{(t+1)} \in \mathsf{Lin}\{\mathbf{x}^{(0)}, ..., \mathbf{x}^{(t)}, \nabla f_{i_0}(\mathbf{x}^{(0)}), ..., \nabla f_{i_t}(\mathbf{x}^{(t)})\}.$$

Questions:

- ▷ Are existing algorithms (KatyushaX, RapGrad, ...) already optimal?
- What is the lower bound of IFO complexity for any linear-span first-order randomized algorithm to find ε-suboptimal solution or stationary point?

Smoothness Assumption

▶ Smoothness: For any differentiable function $f : \mathbb{R}^m \to \mathbb{R}$, we say f is (l, L)-smooth for some $l \in \mathbb{R}$ and $L \in \mathbb{R}^+$ if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, it holds that

$$\frac{l}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

we denote $f \in \mathcal{S}^{(l,L)}$.

• Average smoothness: For any differentiable functions $\{f_i\}_{i=1}^n : \mathbb{R}^m \to \mathbb{R}$, we say $\{f_i\}_{i=1}^n$ is *L*-average smooth for some L > 0 if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$

$$\mathbb{E}_i \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\|_2^2 \le L^2 \|\mathbf{x} - \mathbf{y}\|_2^2,$$

where $\mathbb{E}_i X(i) = 1/n \cdot \sum_{i=1}^n X(i)$ for any random variable X(i). We denote $\{f_i\}_{i=1}^n \in \mathcal{V}^{(L)}$.

Lower Bound Results – Convex Case

► Let
$$\Delta = F(\mathbf{x}^{(0)}) - \inf_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x})$$
, $B = \min_{\mathbf{x} \in \mathcal{X}^*} ||\mathbf{x} - \mathbf{x}^{(0)}||_2$, where $\mathcal{X}^* = \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x})$.

- $F \in \mathcal{S}^{(\sigma,L)}$ or $F \in \mathcal{S}^{(0,L)}$, $\sigma > 0$, find an ϵ -suboptimal solution.
- ► The lower bounds are tight.

ϵ -suboptimal solution	$(\sigma, L), \{f_i\} \in \mathcal{V}^{(L)}$	$(0,L), \{f_i\} \in \mathcal{V}^{(L)}$
Upper Bounds	$Oigg(\left(n + n^{3/4} \sqrt{rac{L}{\sigma}} ight) \log rac{\Delta}{\epsilon} igg)$ (Allen-Zhu, 2018)	$Oig(n+n^{3/4}B\sqrt{rac{L}{\epsilon}}ig)$ (Allen-Zhu, 2018)
Lower Bounds	$\Omegaig(n+n^{3/4}\sqrt{rac{L}{\sigma}}\lograc{\Delta}{\epsilon}ig)$ (This work)	$\Omegaig(n+n^{3/4}B\sqrt{rac{L}{\epsilon}}ig)$ (This work)

Lower Bound Results – Nonconvex Case

- $F \in \mathcal{S}^{(-\sigma,L)}$, find an ϵ stationary point.
- > The lower bounds are tight in most regime of parameters.

ϵ -stationary point	$(-\sigma, L), \{f_i\} \in \mathcal{V}^{(L)}$	$(-\sigma, L), f_i \in \mathcal{S}^{(-\sigma, L)}$
Upper Bounds	$\widetilde{O}\left(\frac{\Delta}{\epsilon^2}(n^{3/4}\sqrt{\sigma L}\wedge\sqrt{n}L)\right)$	$\widetilde{O} \left(\frac{\Delta}{\epsilon^2} (n\sigma + \sqrt{n\sigma L}) \wedge \sqrt{n}L \right)$
	(Allen-Zhu, 2017b) (Zhou et al., 2018)	(Lan and Yang, 2018) (Zhou et al, 2018)
Lower Bounds	$\Omega\left(\frac{\Delta}{\epsilon^2}(n^{3/4}\sqrt{\sigma L}\wedge\sqrt{n}L)\right)$	$\Omegaig(rac{\Delta}{\epsilon^2}(\sqrt{n\sigma L}\wedge L)ig)$
	(This work)	(This work)

Overview of Proof Technique

We want to construct the following adversarial functions to show the lower bounds of IFO complexity.

Overview of Proof Technique

- We want to construct the following adversarial functions to show the lower bounds of IFO complexity.
- Quadratic function class: For any $0 \le \xi, \zeta \le 1$, we define $Q(\mathbf{x}; \xi, m, \zeta) : \mathbb{R}^m \to \mathbb{R}$ as

$$Q(\mathbf{x};\xi,m,\zeta) := \frac{\xi}{2}(\mathbf{x}_1 - 1)^2 + \frac{1}{2}\sum_{t=1}^{m-1}(\mathbf{x}_{t+1} - \mathbf{x}_t)^2 + \frac{\zeta}{2}(\mathbf{x}_m)^2.$$

Overview of Proof Technique

- We want to construct the following adversarial functions to show the lower bounds of IFO complexity.
- Quadratic function class: For any $0 \le \xi, \zeta \le 1$, we define $Q(\mathbf{x}; \xi, m, \zeta) : \mathbb{R}^m \to \mathbb{R}$ as

$$Q(\mathbf{x};\xi,m,\zeta) := \frac{\xi}{2}(\mathbf{x}_1 - 1)^2 + \frac{1}{2}\sum_{t=1}^{m-1}(\mathbf{x}_{t+1} - \mathbf{x}_t)^2 + \frac{\zeta}{2}(\mathbf{x}_m)^2.$$

- $\triangleright Q(\mathbf{x};\xi,m,\zeta) \in \mathcal{S}^{(0,4)}.$
- ▷ Suppose that $\mathbf{U} \in \mathbb{R}^{m \times d}$ satisfying $\mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$. Suppose that $\mathbf{U} = [\mathbf{u}^{(1)}, ..., \mathbf{u}^{(m)}]^{\top}$. Then for any $\bar{\mathbf{x}}$ satisfying $\mathbf{U}\bar{\mathbf{x}} \in \text{Lin}\{\mathbf{u}^{(1)}, ..., \mathbf{u}^{(t)}\}$, and any differentiable function $\mu : \mathbb{R} \to \mathbb{R}$, we have $\nabla[Q(\mathbf{U}\bar{\mathbf{x}}; \xi, m, \zeta) + \sum_{i=1}^{m} \mu(\bar{\mathbf{x}}^{\top}\mathbf{u}^{(i)})] \in \text{Lin}\{\mathbf{u}^{(1)}, ..., \mathbf{u}^{(t+1)}\}$.

Lower Bound Function Class

• Strongly convex case: f_{Nsc} (Nesterov, 2014) • For $0 \le \alpha \le 1$, we define $f_{Nsc}(\mathbf{x}; \alpha, m) : \mathbb{R}^m \to \mathbb{R}$ as

$$f_{N\mathsf{sc}}(\mathbf{x};\alpha,m) := \frac{1-\alpha}{4} Q\left(\mathbf{x};1,m,\frac{2\sqrt{\alpha}}{\sqrt{\alpha}+1}\right) + \frac{\alpha}{2} \|\mathbf{x}\|_2^2.$$

Lower Bound Function Class

• Strongly convex case: f_{Nsc} (Nesterov, 2014) • For $0 \le \alpha \le 1$, we define $f_{Nsc}(\mathbf{x}; \alpha, m) : \mathbb{R}^m \to \mathbb{R}$ as

$$f_{N\mathsf{sc}}(\mathbf{x};\alpha,m) := \frac{1-\alpha}{4} Q\left(\mathbf{x};1,m,\frac{2\sqrt{\alpha}}{\sqrt{\alpha}+1}\right) + \frac{\alpha}{2} \|\mathbf{x}\|_2^2.$$

▶ Convex case:
$$f_{Nc}$$
 (Nesterov, 2014)
▷ We define $f_{Nc}(\mathbf{x}; m) : \mathbb{R}^{2m-1} \to 1$ as

$$f_{Nc}(\mathbf{x};m) := \frac{1}{4}Q(\mathbf{x};1,2m-1,1).$$

Lower Bound Function Class

▶ Strongly convex case: f_{Nsc} (Nesterov, 2014) ▷ For $0 \le \alpha \le 1$, we define $f_{Nsc}(\mathbf{x}; \alpha, m) : \mathbb{R}^m \to \mathbb{R}$ as

$$f_{N\mathsf{sc}}(\mathbf{x};\alpha,m) := \frac{1-\alpha}{4} Q\left(\mathbf{x};1,m,\frac{2\sqrt{\alpha}}{\sqrt{\alpha}+1}\right) + \frac{\alpha}{2} \|\mathbf{x}\|_2^2.$$

▶ **Convex case:**
$$f_{Nc}$$
 (Nesterov, 2014)
▶ We define $f_{Nc}(\mathbf{x}; m) : \mathbb{R}^{2m-1} \to 1$ as

$$f_{Nc}(\mathbf{x};m) := \frac{1}{4}Q(\mathbf{x};1,2m-1,1).$$

▶ Nonconvex case: $f_{\mathcal{C}}$ (Carmon et al., 2017b) ▶ For $0 \le \alpha \le 1$, we define $f_{\mathcal{C}}(\mathbf{x}; \alpha, m) : \mathbb{R}^{m+1} \to \mathbb{R}$ as

$$f_{\mathcal{C}}(\mathbf{x};\alpha,m) := Q(\mathbf{x};\sqrt{\alpha},m+1,0) + \alpha \Gamma(\mathbf{x}), \ \Gamma(\mathbf{x}) := \sum_{i=1}^{m} 120 \int_{1}^{\mathbf{x}_{i}} \frac{t^{2}(t-1)}{1+t^{2}} dt.$$

Thank you!

Poster session: **Tue Jun 11th 06:30 – 09:00 PM** PM @ Pacific Ballroom 94