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Problem Setup

I Nonconvex finite-sum optimization:

min
x∈Rd

F (x) =
1

n

n∑
i=1

fi(x).

B F (x) is of (l, L)-smoothness, l ∈ R and L > 0,

l

2
‖x− y‖22 ≤ F (x)− F (y)− 〈∇F (y),x− y〉 ≤ L

2
‖x− y‖22, ∀x,y ∈ Rd.

I Optimization goals:
B For l ≥ 0, the goal is to find an ε-suboptimal solution x̂,

F (x̂)− inf
x∈Rd

F (x) ≤ ε.

B For l < 0, the goal is to find an ε-stationary point x̂,

‖∇F (x̂)‖2 ≤ ε.
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Definitions

I Optimization oracle: Incremental First-order Oracle (IFO)

B Given x ∈ Rd and i ∈ [n], an IFO returns [fi(x),∇fi(x)].

I Algorithm class: Linear-span first-order randomized algorithms

B Given an initial point x(0).

B A : {fi}ni=1 → {xt, it}∞t=0 is defined as a measurable mapping from functions {fi}ni=1

to an infinite sequence of point and index pairs {xt, it}∞t=0 with random index it ∈ [n],
which satisfies

x(t+1) ∈ Lin{x(0), ...,x(t),∇fi0(x(0)), ...,∇fit(x(t))}.

I Questions:

B Are existing algorithms (KatyushaX, RapGrad, ...) already optimal?

B What is the lower bound of IFO complexity for any linear-span first-order randomized
algorithm to find ε-suboptimal solution or stationary point?
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Smoothness Assumption

I Smoothness: For any differentiable function f : Rm → R, we say f is (l, L)-smooth
for some l ∈ R and L ∈ R+ if for any x,y ∈ Rm, it holds that

l

2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y),x− y〉 ≤ L

2
‖x− y‖22.

we denote f ∈ S(l,L).

I Average smoothness: For any differentiable functions {fi}ni=1 : Rm → R, we say
{fi}ni=1 is L-average smooth for some L > 0 if for any x,y ∈ Rm

Ei‖∇fi(x)−∇fi(y)‖22 ≤ L2‖x− y‖22,

where EiX(i) = 1/n ·
∑n

i=1X(i) for any random variable X(i). We denote
{fi}ni=1 ∈ V(L).
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Lower Bound Results – Convex Case

I Let ∆ = F (x(0))− infx∈Rd F (x), B = minx∈X ∗ ‖x− x(0)‖2, where
X ∗ = argminx∈Rd F (x).

I F ∈ S(σ,L) or F ∈ S(0,L), σ > 0, find an ε-suboptimal solution.

I The lower bounds are tight.

ε-suboptimal solution (σ, L), {fi} ∈ V(L) (0, L), {fi} ∈ V(L)

Upper Bounds
O

((
n+ n3/4

√
L
σ

)
log ∆

ε

)
O
(
n+ n3/4B

√
L
ε

)
(Allen-Zhu, 2018) (Allen-Zhu, 2018)

Lower Bounds
Ω
(
n+ n3/4

√
L
σ log ∆

ε

)
Ω
(
n+ n3/4B

√
L
ε

)
(This work) (This work)
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Lower Bound Results – Nonconvex Case

I F ∈ S(−σ,L), find an ε- stationary point.

I The lower bounds are tight in most regime of parameters.

ε-stationary point (−σ, L), {fi} ∈ V(L) (−σ, L), fi ∈ S(−σ,L)

Upper Bounds
Õ
(

∆
ε2

(n3/4
√
σL ∧

√
nL)

)
Õ
(

∆
ε2

(nσ +
√
nσL) ∧

√
nL
)

(Allen-Zhu, 2017b) (Lan and Yang, 2018)
(Zhou et al., 2018) (Zhou et al, 2018)

Lower Bounds
Ω
(

∆
ε2

(n3/4
√
σL ∧

√
nL)

)
Ω
(

∆
ε2

(
√
nσL ∧ L)

)
(This work) (This work)
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Overview of Proof Technique

I We want to construct the following adversarial functions to show the lower bounds of
IFO complexity.

I Quadratic function class: For any 0 ≤ ξ, ζ ≤ 1, we define Q(x; ξ,m, ζ) : Rm → R as

Q(x; ξ,m, ζ) :=
ξ

2
(x1 − 1)2 +

1

2

m−1∑
t=1

(xt+1 − xt)
2 +

ζ

2
(xm)2.

B Q(x; ξ,m, ζ) ∈ S(0,4).

B Suppose that U ∈ Rm×d satisfying UU> = I. Suppose that U = [u(1), ...u(m)]>.
Then for any x̄ satisfying Ux̄ ∈ Lin{u(1), ...,u(t)}, and any differentiable function
µ : R→ R, we have ∇[Q(Ux̄; ξ,m, ζ) +

∑m
i=1 µ(x̄>u(i))] ∈ Lin{u(1), ...,u(t+1)}.
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Lower Bound Function Class

I Strongly convex case: fNsc (Nesterov, 2014)
B For 0 ≤ α ≤ 1, we define fNsc(x;α,m) : Rm → R as

fNsc(x;α,m) :=
1− α

4
Q

(
x; 1,m,

2
√
α√

α+ 1

)
+
α

2
‖x‖22.

I Convex case: fNc (Nesterov, 2014)
B We define fNc(x;m) : R2m−1 → 1 as

fNc(x;m) : =
1

4
Q(x; 1, 2m− 1, 1).

I Nonconvex case: fC (Carmon et al., 2017b)
B For 0 ≤ α ≤ 1, we define fC(x;α,m) : Rm+1 → R as

fC(x;α,m) : = Q(x;
√
α,m+ 1, 0) + αΓ(x), Γ(x) :=

m∑
i=1

120

∫ xi

1

t2(t− 1)

1 + t2
dt.
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Thank you!

Poster session:
Tue Jun 11th 06:30 – 09:00 PM

PM @ Pacific Ballroom 94

Lower Bounds for Smooth Nonconvex Finite-Sum Optimization 9 / 9


