Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization

Kaiyi Ji¹, Zhe Wang¹, Yi Zhou², Yingbin Liang¹ ¹Ohio State University, ²Duke University

ICML 2019

Zeroth-order (Gradient-free) Nonconvex Optimization

• Problem fomulation:

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- $f_i(\cdot)$: individual nonconvex loss function
- Gradient of $f_i(\cdot)$ is unknown
- Only the function value of $f_i(\cdot)$ is accessible
- Examples:
 - Generation of black-box adversarial samples
 - Parameter optimization for black-box systems
 - Action exploration in reinforcement learning

Generating black-box adversarial samples

Zeroth-order (Gradient-free) Nonconvex Optimization

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- Standard assumptions on $f(\cdot)$:
 - $f(\cdot)$ is bounded below, i.e., $f^* = \inf_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) > -\infty$
 - $\nabla f_i(\cdot)$ is *L*-smooth, i.e.,

$$\|
abla f_i(\mathbf{x}) -
abla f_i(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|$$

• (Online case) $\nabla f_i(\cdot)$ has bounded variance, i.e., there exists $\sigma > 0$ s.t.

$$\frac{1}{n}\sum_{i=1}^{n}\|\nabla f_{i}(\mathbf{x})-\nabla f(\mathbf{x})\|^{2}\leq\sigma^{2}$$

• Optimization goal: find an ϵ -accurate stationary solution

$$\mathbb{E}\|\nabla f(x)\|^2 \le \epsilon$$

Existing Zeroth-Order SVRG

ZO-SVRG (Liu et al, 2018)

- Each outer-loop iteration estimates gradient by $\hat{\mathbf{g}}_s = \hat{\nabla}_{\mathsf{rand}} f(\mathbf{x}^s_0, \mathbf{u}^s_0)$
- Each inner-loop iteration computes

$$\mathbf{v}_t^s = \frac{1}{|B|} \sum_{i \in B} \left(\hat{\nabla}_{\mathsf{rand}} f_i(\mathbf{x}_t^s; \mathbf{u}_t^s) - \hat{\nabla}_{\mathsf{rand}} f_i(\mathbf{x}_0^s; \mathbf{u}_0^s) \right) + \mathbf{\hat{g}}_s,$$

- Two-point gradient estimator: $\hat{\nabla}_{rand} f_i(\mathbf{x}_t^s, \mathbf{u}_t^s) = \frac{d}{\beta} (f_i(\mathbf{x}_t^s + \beta \mathbf{u}_t^s) f_i(\mathbf{x}_t^s)) \mathbf{u}_t^s$
- **u**^s_t: smoothing vector; β: smoothing parameter

Existing Zeroth-Order SVRG

ZO-SVRG (Liu et al, 2018)

- Each outer-loop iteration estimates gradient by $\hat{\mathbf{g}}_s = \hat{\nabla}_{rand} f(\mathbf{x}_0^s, \mathbf{u}_0^s)$
- Each inner-loop iteration computes

$$\mathbf{v}_t^s = \frac{1}{|B|} \sum_{i \in B} \left(\hat{\nabla}_{\mathsf{rand}} f_i(\mathbf{x}_t^s; \mathbf{u}_t^s) - \hat{\nabla}_{\mathsf{rand}} f_i(\mathbf{x}_0^s; \mathbf{u}_0^s) \right) + \mathbf{\hat{g}}_s,$$

- Two-point gradient estimator: $\hat{\nabla}_{rand} f_i(\mathbf{x}_t^s, \mathbf{u}_t^s) = \frac{d}{\beta} (f_i(\mathbf{x}_t^s + \beta \mathbf{u}_t^s) f_i(\mathbf{x}_t^s)) \mathbf{u}_t^s$
- \mathbf{u}_t^s : smoothing vector; β : smoothing parameter

Algorithms	Convergence rate	# of function queries
ZO-SGD ZO-SVRG	$\mathcal{O}(\sqrt{d/T})$ $\mathcal{O}(d/T + 1/ B)$	$\mathcal{O}(d\epsilon^{-2})\ \mathcal{O}(d\epsilon^{-2}+{n\epsilon^{-1}})$

Issue: ZO-SVRG has worse query complexity than ZO-SGD

ZO-SVRG-Coord-Rand vs ZO-SVRG

ZO-SVRG-Coord-Rand (This paper)

- Each outer-loop iteration estimates gradient by $\hat{\mathbf{g}}_s = \hat{\nabla}_{\text{coord}} f_s(\mathbf{x}^k)$
 - As a comparison, ZO-SVRG uses $\hat{\mathbf{g}}_s = \hat{\nabla}_{rand} f(\mathbf{x}_0^s, \mathbf{u}_0^s)$
- Each inner-loop iteration computes

$$\mathbf{v}_t^s = \frac{1}{|B|} \sum_{i \in B} \left(\hat{\nabla}_{\mathsf{rand}} f_i(\mathbf{x}_t^s; \underbrace{\mathbf{u}_{i,t}^s}_{\mathsf{ZO-SVRG:} \, \mathbf{u}_t^s} \right) - \hat{\nabla}_{\mathsf{rand}} f_i(\mathbf{x}_0^s; \underbrace{\mathbf{u}_{i,t}^s}_{\mathsf{ZO-SVRG:} \, \mathbf{u}_0^s} \right) + \hat{\mathbf{g}}_s,$$

• $\hat{\nabla}_{coord} f(\cdot)$: coordinate-wise gradient estimator

Algorithms	Convergence rate	Function query complexity
ZO-SGD ZO-SVRG ZO-SVRG-Coord-Rand	$\mathcal{O}(\sqrt{d/T})$ $\mathcal{O}(d/T+1/ B)$ $\mathcal{O}(1/T)$	$\mathcal{O}(d\epsilon^{-2}) \ \mathcal{O}(d\epsilon^{-2}+n\epsilon^{-1}) \ \mathcal{O}\left(\min\left\{d\epsilon^{-5/3},dn^{2/3}\epsilon^{-1} ight\} ight)$

Sharp Analysis for ZO-SVRG-Coord (Liu et al, 2018)

ZO-SVRG-Coord (Liu et al, 2018)

- Each outer-loop iteration estimates gradient by $\hat{\mathbf{g}}_s = \hat{\nabla}_{\text{coord}} f_S(\mathbf{x}^k)$
- Each inner-loop iteration computes

$$\mathbf{v}_t^s = \frac{1}{|B|} \sum_{i \in B} \left(\hat{\nabla}_{\text{coord}} f_i(\mathbf{x}_t^s; \mathbf{u}_{i,t}^s) - \hat{\nabla}_{\text{coord}} f_i(\mathbf{x}_0^s; \mathbf{u}_{i,t}^s) \right) + \hat{\mathbf{g}}_s,$$

Algorithms	Stepsize	Convergence rate	Function query complexity
ZO-SVRG-Coord	$\mathcal{O}(\frac{1}{d})$	$\mathcal{O}(\frac{d}{T})$	$\mathcal{O}\left(dn+\frac{d^2}{\epsilon}+\frac{dn}{\epsilon}\right)$
ZO-SVRG-Coord (our analysis)	$\mathcal{O}(1)$	$\mathcal{O}(\frac{1}{T})$	$\mathcal{O}\left(\min\left\{rac{d}{\epsilon^{5/3}}, rac{dn^{2/3}}{\epsilon} ight\} ight)$

Key idea:

- Coordinate-wise gradient estimator \rightarrow high accuracy \rightarrow faster rate

More Results

- Develop a faster zeroth-order SPIDER-type algorithm
- Develop improved zeroth-order algorithms for
 - nonconvex nonsmooth optimization
 - convex smooth optimization
 - Polyak-Łojasiewicz (PL) condition
- Experiments:

Generating black-box adversarial examples for DNNs

Thanks!