
## Imperceptible, Robust and Targeted Adversarial Examples for Automatic Speech Recognition

Yao Qin<sup>1</sup>, Nicholas Carlini<sup>2</sup>, Ian Goodfellow<sup>2</sup>, Garrison Cottrell<sup>1</sup>and Colin Raffel<sup>2</sup> <sup>1</sup>UC San Diego <sup>2</sup>Google Research

> Long Beach, ICML June 12, 2019



### • Targeted

Given an input audio x, a targeted transcription y, an automatic speech recognition system  $f(\cdot)$ , our target is to find a perturbation  $\delta$ , that  $f(x + \delta) = y$  and  $f(x) \neq y$ .

#### • Imperceptible

Humans cannot differentiate x and  $x + \delta$  when listening to these examples.

#### • Robust

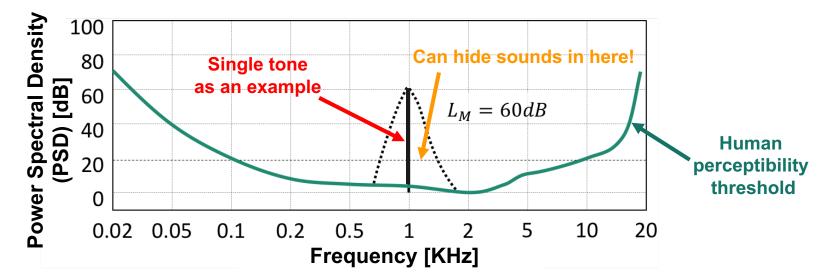
Played by a speaker and recorded by a microphone (over-the-air). (We don't achieve this goal completely, but succeed at simulated rooms.)

## **Our Settings**

Threat Model

White-box Attack

• ASR Model


Lingvo ASR system (state-of-the-art) [1]

[1] Shen, Jonathan, et al. "Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling." arXiv preprint arXiv:1902.08295 (2019).

## Imperceptibility

#### • Frequency Masking

A louder signal (the "masker") can make other signals at nearby frequencies (the "maskees") imperceptible.



## Imperceptibility

• Loss function  $\ell(x, \delta, y) = \ell_{net}(f(x + \delta), y) + \alpha \cdot \ell_{\theta}(x, \delta)$ 

•  $\ell_{net}(f(x + \delta), y)$  is the cross-entropy loss function;

•  $\ell_{\theta}(x, \delta) = \max\{\bar{p}_{\delta}(k) - \theta_{x}(k), 0\}$  is the imperceptibility loss Where  $\delta$  is the perturbation,  $\bar{p}_{\delta}(k)$  is the psd of  $\delta$  and  $\theta_{x}(k)$  is the masking threshold

### Robustness

- Room Simulator
  - Simulate room impulse r based on room configurations

• Convolve speech with reverberation t(x) = x \* r,  $t \sim T$ 

Robustness Loss Function

• Minimize  $\ell(x, \delta, y) = E_{t \sim T} \left[ \ell_{net}(f(t(x + \delta)), y)) \right]$  such that  $|\delta| < \epsilon$ 

### **Imperceptible and Robust Attacks**

Combination Loss Function (imperceptibility & robustness)

$$\square \text{ Minimize } \ell(x, \delta, y) = \mathbb{E}_{t \sim T} \left[ \ell_{net}(f(t(x + \delta)), y) \right] + \alpha \cdot \ell_{\theta}(x, \delta)$$

$$\boxed{\text{Robustness loss}} \text{ Imperceptibility loss}$$

- Construct *effectively imperceptible* adversarial examples using frequency masking.
- Develop robust adversarial examples that remain effective after playing over-the-air in the simulated rooms.
- Generate adversarial examples for non- $\ell_p$ -based metrics.

# Thanks! Come to our poster #65 !

Project Webpage: <u>http://cseweb.ucsd.edu/~yaq007/imperceptible-robust-adv.html</u> Code: <u>https://github.com/tensorflow/cleverhans/tree/master/examples/adversarial\_asr</u>