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Bad news: adversarial examples are here to stay :)
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Adversarial attacks are a ’butterfly effect’ on data manifold

Classifier: Measurable function h : X → Y
Error set: B(h, k) = {x ∈ X | h(x) 6= k}, h = classifier

Almost error set: B(h, k)ε := {x ∈ X | dist(x ,B(h, k)) ≤ ε}

B(h, k)
B(h, k)ε

err(h|k) := PX |k(B(h, k)) > 0 if h is not perfect on class k .

Consequence is that accε(h|k) ↘ 0 expo. fast as function of ε.

Thus adversarial robustness is impossible in general!

Elvis Dohmatob Generalized No Free Lunch Theorem – slide 3 / 13



Isoperimetry in general metric spaces

X = (X , d), µ is probability measure on X , B is Borel subset

Gaussian isoperimetric inequality (GIPI) means that:

µ(Bε) ≥ 1− e−
1
2c
(ε−εB)2 , ∀ε ≥ εB

Current works [Tsipras ’18; Fawzi et al. 18; Shafahi 18] use
elementary GIPI, where X = (Rp, L2), and µ = γp.

Arguments not powerful enough for more general geometry!
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Talagrand transportation-cost inequality

The T2(c) property

Given c ≥ 0, a distribution µ on X is said to satisfy T2(c) if for
every distribution ν on X with ν � µ, one has

W2(ν, µ) ≤
√

2cKL(ν‖µ), (1)

where KL(ν‖µ) :=
∫
X log(dν/dµ)dµ, entropy of ν relative to µ.

T2(c) =⇒ GIPI(c) =⇒ concentration

Satisfied by a variety of distributions µ

Links relative entropy to optimal transport
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Generalized No Free Lunch Theorem for geodesic distance

Theorem (Generalized “No Free Lunch” [Dohmatob ’18])

Suppose that conditional distribution PX |k has the T2(σ2k)
property. Given a classifier h : X 7→ Y such that err(h|k) > 0,
define ε(h|k) := σk

√
2 log(1/ err(h|k)). Then we have the

following bounds:

(A) Adversarial robustness accuracy: if ε ≥ ε(h|k), then

accε(h|k) ≤ e
− 1

2σ2
k

(ε−ε(h|k))2
. (2)

(B) Average distance to error set:

d(h|k) ≤ σk
(√

log(1/ err(h|k)) +
√
π/2

)
(3)
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Generalized No Free Lunch Theorem for `p distances

Corollary (Generalized NFLT for `∞ attacks [Dohmatob ’18])

In particular, for the `∞ threat model, we have the following
bounds:

(B1) Adversarial robustness accuracy: If ε ≥ ε(h|k)/
√
p, then

accε(h|k) ≤ e
− p

2σ2
k

(ε−ε(h|k)/√p)2
. (4)

(B2) Average distance to error set:

d(h|k) ≤ σk√
p

(√
log(1/ err(h|k)) +

√
π/2

)
(5)

∴ inherent vulnerability to `∞-perturbations of size O(1/
√
p).

Result is largely independent of classifier!
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Special cases of our results

Log-concave distribs dPX |k ∝ e−vk (x)dx satisfying Eméry-Bakry
curvature condition: Hessx(vk) + Ricx(X ) � (1/σ2k)Ip.

e.g Gaussians (considered in [Tsipras ’18, Fawzi et al. 18])

Perturbed log-concave distribs (via Holley-Shroock Theorem)

The uniform measure on compact Riemannian manifolds of
positive Ricci curvature, e.g “adversarial spheres” (considered in
[Gilmer ’18]), tori, or any compact Lie group.

Pushforward via a Lipschitz function f , of a distribution in
T2(σ2k). Indeed, take σ̃k = ‖f ‖Lipσk . E.g [Fawzi 18; Shafahi 18]

Tensor product µ1 ⊗ µ2 ⊗ . . .⊗ µp of distributions having T2(c)
also has T2(c).

Etc., etc.
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Special case: “Adversarial spheres” [Gilmer ’18]

Y ∼ Bern(1/2, {±}),

X |k ∼ uniform(SpRk
), where

R+ > R− > 0.

SpRk
is a compact Riemannian manifold

with constant Ricci curvature (p − 1)R−2k .

Thus PX |k satisfies T2(R2
k/(p − 1)).

∴ EX |k [dgeo(X ,B(h, k))] ≤ Rk√
p − 1

(
√

2 log(1/err(h|k)) +
√
π/2)

∼ Rk√
p

Φ−1(acc(h|k))

Same bounds obtained in [Gilmer ’18] “manually”
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Special case: Hypercube [0, 1]p [Shafahi 18]

U([0, 1]) = CDF(Gaussian) :=
∫ z
−∞ γ(x)dx , a 1√

2π
-Lipschitz map

Therefore U([0, 1]) has concentration property with c = 2π.
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Simulated data [Tsipras ’18] “noisy features” dataset

Y ∼ Bern({±1}), X |Y ∼ N (Y η, 1)×p, with p = 1000 where η is
an SNR parameter which controls the difficulty of the problem.

Phase-transition occurs as predicted by our theorems
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Summary of contributions

We have shown that on a very broad class of data distributions,
any classifier with even a bit of accuracy is vulnerable to
adversarial attacks

We use powerful tools from geometric probability theory to
generalize recent impossibility results on adversarial robustness
[Fawzi ’18, Gilmer ’18, Tsipras ’18; Shafahi ’18; etc.].

Our predictions are not incompatible with current research
endeavors being investing in designing defenses against adversarial
attacks.

It simply says there is a sharp and definitive limit to the
amount of robustness that can be guaranteed

Full manuscript:
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Questions ? (come to poster #69)
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