

Adversarial camera stickers: A physical camera-based attack on deep learning systems

Adversarial attacks: not just a digital problem

All existing physical attacks modify the **object**.

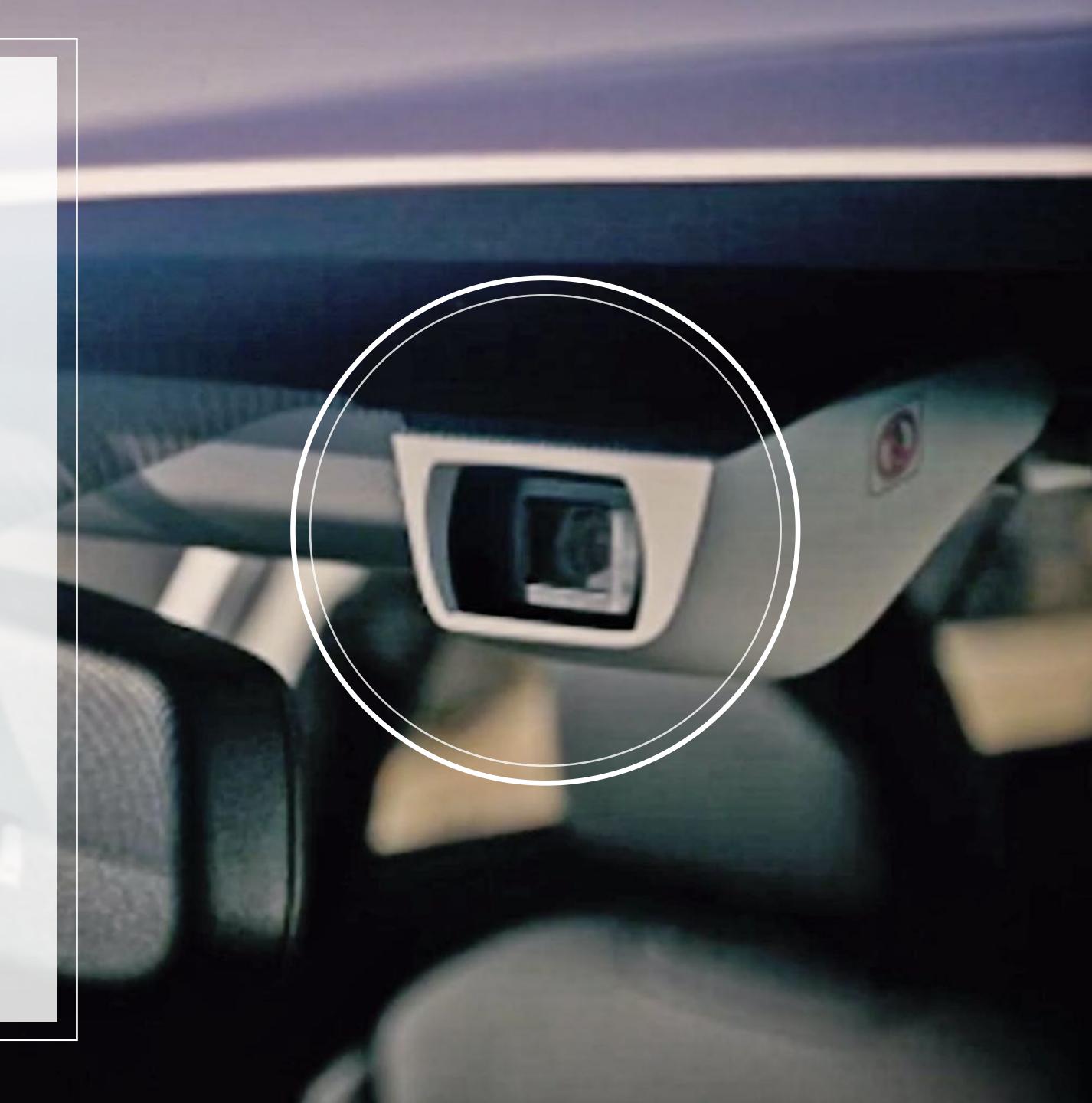
Sharif et al., 2016

Etimov et al., 2017

Athalye et al., 2017

QUESTION

All existing physical attacks modify the *object*, but is it possible instead to fool deep classifiers by modifying the *camera?*



This paper: A physical adversarial camera attack

- We show it is indeed possible to create visually inconspicuous modifications to a camera that fool deep classifiers
- Uses a small specially-crafted translucent sticker, placed upon camera lens
- The adversarial attack is *universal*, meaning that a single perturbation can fool the classifier for a given object class over multiple viewpoints and scales

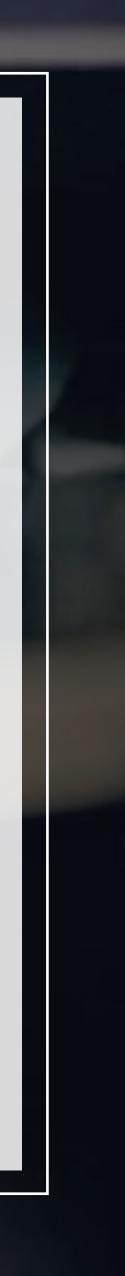
The challenge of physical sticker attacks

The challenge

- (Inconspicuous) physical stickers are *extremely limited* in their resolution (can only create blurry dots over images)
- Need to both learn a model of allowable perturbations and create the adversarial image

Our solution

- A differentiable model of sticker perturbations, based upon alpha blending of blurred image overlays
- Use gradient descent to both fit the perturbation model to observed data, and construct an adversarial attack



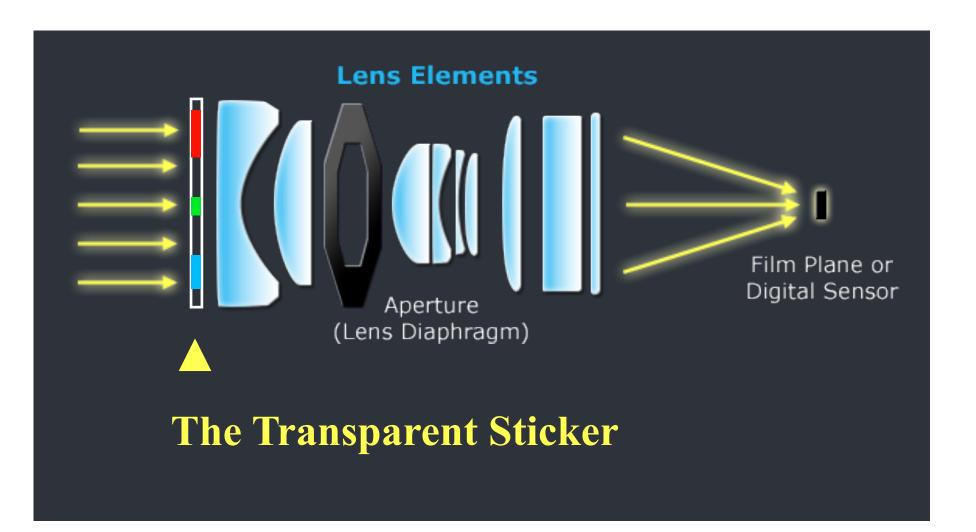
Methodology

 Attack model consists of smoothed alpha blend between observed image and some fixed color (iterated to produce multiple dots)

$$I_{x,y}^{out} = (1 - \alpha_{x,y}) \cdot I_{x,y}^{in} + \alpha_{x,y} \cdot c, \qquad \alpha_{x,y} = \exp\left(-\frac{(x - x_c)^2 + (y - y_c)^2}{2\sigma^2}\right)$$

- Parameters of attack include color c, dot position (x_c , y_c) and bandwidth σ
- Key idea: use gradient descent over some parameters (e.g., color, bandwidth) to fit model to observed physical images, over other parameters (e.g. location) to maximize loss

$$\min_{c,\sigma} \text{SSIM}(I^{out}, I^{real}), \qquad \max_{x_c, y_c} \sum_{i=1}^m \text{Loss}(I^{out}, y_{true}, y_{tar})$$

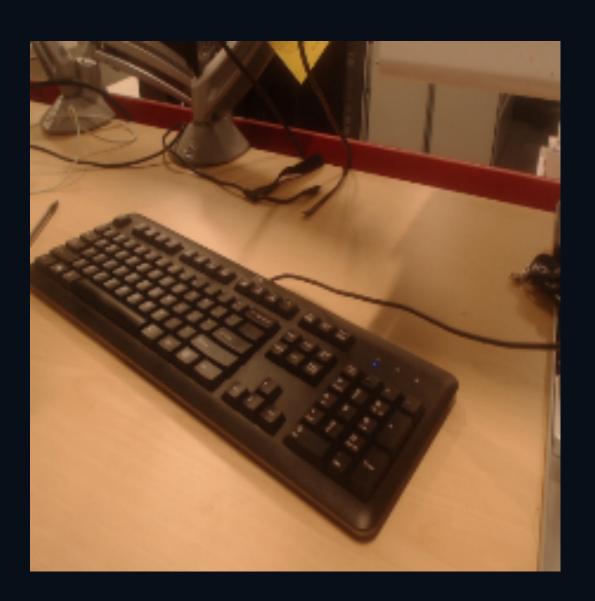


rget)

Juncheng B. Li, Frank R. Schmidt, J. Zico Kolter | Bosch Center for Artificial Intelligence

BOSCH

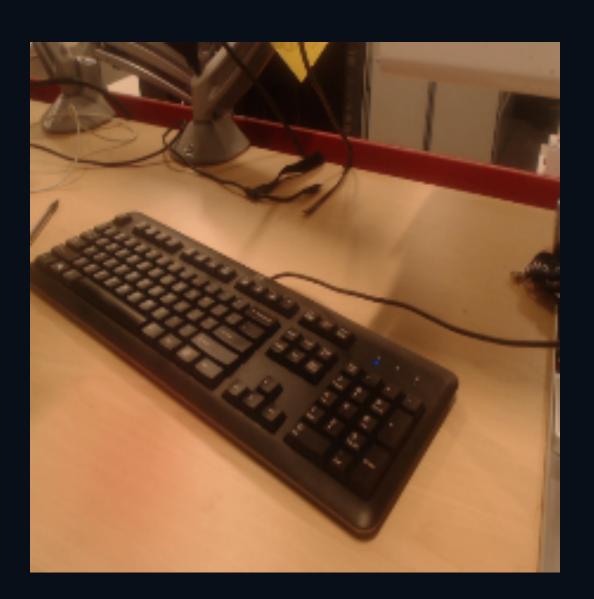
How does a dot look like through camera lense?



Clean Camera View

Red Dot

Juncheng B. Li, Frank R. Schmidt, J. Zico Kolter | Bosch Center for Artificial Intelligence



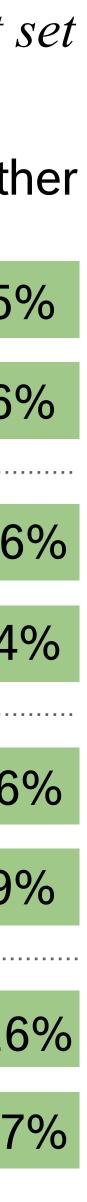
Resulting Blur

Simulated Blur

Results: Virtual Evaluation

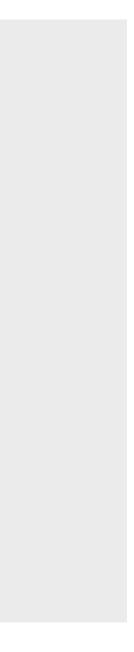
<u>Class</u>	<u>Attack</u>		Prediction	Correct	Target	Oth
Keyboard	No				85%	15%
Mouse	Yes		48%		36%	169
Street sign	No			64%		36
Guitar Pick	Yes	32%		34%		349
Street sign	No			64%		369
50 random classes	Yes	18%	33%			49%
50 random classes	No				<mark>4%</mark>	26
50 random classes	Yes		42%	31	.%	27

Table 1. Performance of our 6-dot attacks on ImageNet test set

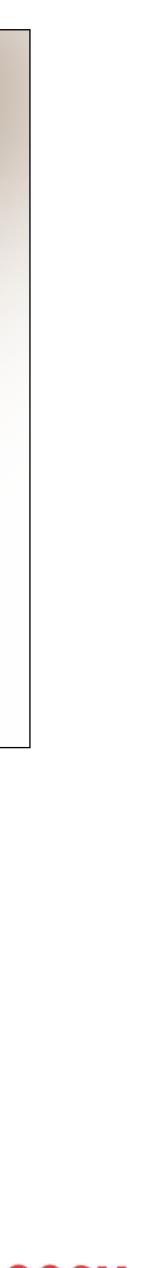


This is a ResNet-50 Model implemented with pyTorch deployed on a Logitech C920 Webcam with clear lense.

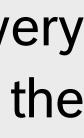
This is a ResNet-50 model implemented with PyTorch deployed on a Logitech C920 WebCam with clear lense. It can recognize street sign at different angles with only minor errors.



Now we cover the camera with our adversarial sticker made by our proposed method to achieve the targeted attack. This should make a "street sign" misclassified as a "guitar pick".



The Sticker results in very inconspicuous blurs in the view. We can achieve targeted attack most of the time at different angles and with different distances.



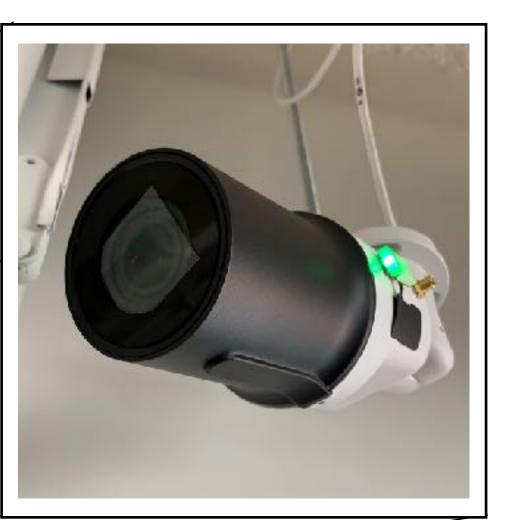
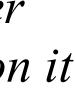
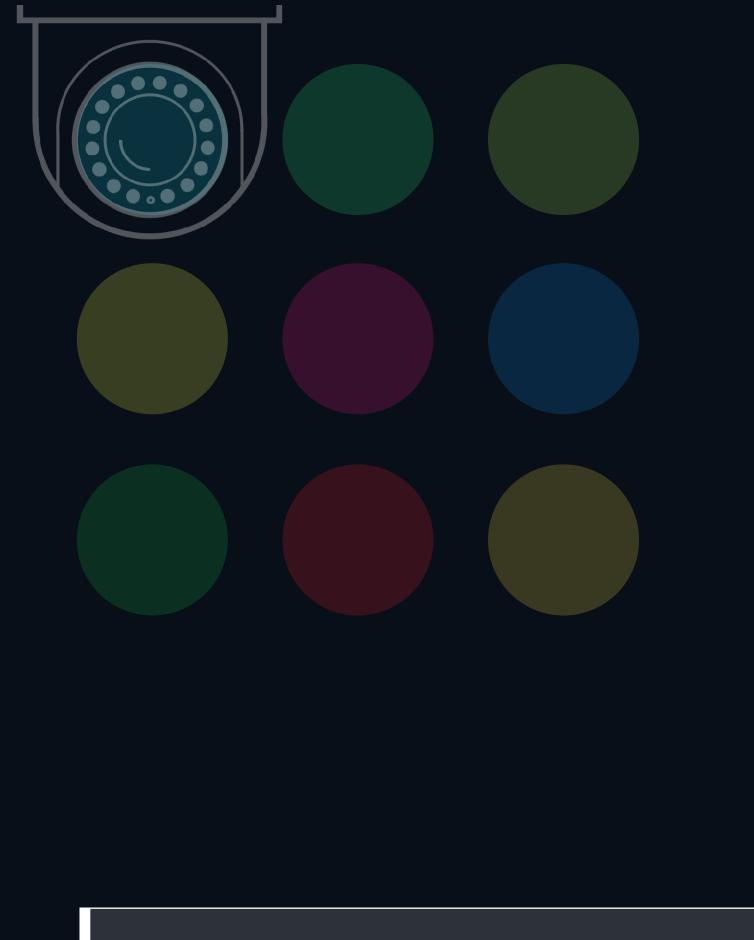


Table 2. Fooling performance of the our method on two 1000 frame videos of a computer keyboard and a stop sign, viewed through a camera with an adversarial sticker placed on it targeted for these attacks.

Results: Real World Evaluation

Original	Target	Prediction				
Class	class	Correct	Target	Othe		
(eyboard	Mouse	271	548	181		
	Space bar	320	522	158		
treet sign	Guitar Pick	194	605	201		
	Envelope	222	525	253		
Coffee mug	Candle	330	427	243		





Summary

to modify the camera

other domains

To find out more, come see our poster

at Pacific Ballroom #65 Tuesday, Jun 11th 06:30-09:00 **ON**

 Adversarial attacks don't need to modify every object in the world to fool a deployed deep classifier, they just need

• Implications in self-driving cars, security systems, many

