On Certifying Non-uniform Bounds against Adversarial Attacks

Chen Liu[†], Ryota Tomioka[‡], Volkan Cevher[†]

†École Polytechnique Fédérale de Lausanne ‡Microsoft Research Cambridge

June 11th, 2019

Problem (Certification Problem)

Given the label set C, a classification model $f : \mathbb{R}^n \to C$ and an input data point $\mathbf{x} \in \mathbb{R}^n$, we would like to find the largest neighborhood S around \mathbf{x} such that $f(\mathbf{x}) = f(\mathbf{x}') \ \forall \mathbf{x}' \in S$.

• Set S is called adversarial budget and $\mathbf{x} \in S$.

Motivation

$$\mathcal{S}^{(p)}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}' = \mathbf{x} + \epsilon \mathbf{v} | \|\mathbf{v}\|_{p} \leq 1\}$$

 $\epsilon \in \mathbb{R}$

Liu et al. (EPFL)

э.

Motivation

$$\mathcal{S}^{(p)}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}' = \mathbf{x} + \epsilon \mathbf{v} | \|\mathbf{v}\|_{p} \leq 1\}$$

 $\epsilon \in \mathbb{R}$

$$\mathcal{S}^{(p)}_{oldsymbol{\epsilon}}(\mathsf{x}) = \{\mathsf{x}' = \mathsf{x} + oldsymbol{\epsilon} \odot \mathsf{v} |\| \mathsf{v} \|_p \leq 1\}$$

 $oldsymbol{\epsilon} \in \mathbb{R}^n$

メロト メロト メヨトメ

æ

Motivation

$$\mathcal{S}^{(p)}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}' = \mathbf{x} + \epsilon \mathbf{v} | \|\mathbf{v}\|_{p} \leq 1\}$$

 $\epsilon \in \mathbb{R}$

$$\mathcal{S}_{m{\epsilon}}^{(
ho)}(\mathbf{x}) = \{\mathbf{x}' = \mathbf{x} + m{\epsilon} \odot \mathbf{v} | \| \mathbf{v} \|_{
ho} \leq 1\} \ m{\epsilon} \in \mathbb{R}^n$$

Advantages of non-uniform bounds:

- Larger overall volumes.
- Quantitative metric of feature robustness.

• A *N*-layer fully connected neural network, parameterized by $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}_{i=1}^{N-1}$

$$\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)} \hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)} \quad i = 1, 2, ..., N - 1 \hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)}) \qquad i = 2, 3, ..., N - 1$$
 (1)

Formulation

• A *N*-layer fully connected neural network, parameterized by $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}_{i=1}^{N-1}$ $\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)}\hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)}$ i = 1, 2, ..., N-1 $\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)})$ i = 2, 3, ..., N-1 (1)

• Given a model $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}$ and a data point **x** labeled as $c \in \mathcal{C}$, we want to

$$\min_{\epsilon} \left\{ -\sum_{j=0}^{n_{1}-1} \log \epsilon_{j} \right\} \\
\hat{\mathbf{z}}^{(1)} \in S_{\epsilon}(\mathbf{x}) \\
\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)} \hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)} \qquad i = 1, 2, ..., N - 1 \\
\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)}) \qquad i = 2, 3, ..., N - 1 \\
\mathbf{z}_{c}^{(N)} - \mathbf{z}_{j}^{(N)} \ge \delta \qquad j = 0, 1, ..., n_{N} - 1; j \neq c$$
(2)

Formulation

• A *N*-layer fully connected neural network, parameterized by $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}_{i=1}^{N-1}$ $\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)} \hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)}$ i = 1, 2, ..., N-1 $\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)})$ i = 2, 3, ..., N-1 (1)

• Given a model $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}$ and a data point **x** labeled as $c \in \mathcal{C}$, we want to

$$\min_{\epsilon} \left\{ -\sum_{j=0}^{n_{1}-1} \log \epsilon_{j} \right\} \\
\hat{\mathbf{z}}^{(1)} \in S_{\epsilon}(\mathbf{x}) \\
\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)} \hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)} \\
\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)}) \\
\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)}) \\
j = 0, 1, ..., n_{N} - 1; j \neq c$$
(2)

• Generally intractable (at least NP-complete)! [Weng et al. 18]

Formulation

• A *N*-layer fully connected neural network, parameterized by $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}_{i=1}^{N-1}$ $\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)}\hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)}$ i = 1, 2, ..., N-1 $\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)})$ i = 2, 3, ..., N-1 (1)

• Given a model $\{\mathbf{W}^{(i)}, \mathbf{b}^{(i)}\}$ and a data point **x** labeled as $c \in \mathcal{C}$, we want to

$$\min_{\boldsymbol{\epsilon}} \left\{ -\sum_{j=0}^{n_{1}-1} \log \epsilon_{j} \right\}$$

$$\hat{\mathbf{z}}^{(1)} \in \mathcal{S}_{\boldsymbol{\epsilon}}(\mathbf{x})$$

$$\mathbf{z}^{(i+1)} = \mathbf{W}^{(i)} \hat{\mathbf{z}}^{(i)} + \mathbf{b}^{(i)} \qquad i = 1, 2, ..., N - 1$$

$$\hat{\mathbf{z}}^{(i)} = \sigma(\mathbf{z}^{(i)}) \qquad i = 2, 3, ..., N - 1$$

$$I_{\boldsymbol{c}}^{(N)} - \boldsymbol{u}_{j}^{(N)} \ge \delta \qquad j = 0, 1, ..., n_{N} - 1; j \neq c$$
(2)

Generally intractable (at least NP-complete)! [Weng et al. 18]
Relax the output logits!

Optimization

• $\mathbf{I}^{(N)}$ and $\mathbf{u}^{(N)}$ are differentiable w.r.t. ϵ .

< A

Optimization

- $\mathbf{I}^{(N)}$ and $\mathbf{u}^{(N)}$ are differentiable w.r.t. ϵ .
- The relaxation problem is tractable

$$\min_{\substack{\epsilon, \mathbf{y} \ge 0}} \left\{ -\sum_{j=0}^{n_1-1} \log \epsilon_j \right\} \\
s.t. \ l_c^{(N)} - \mathbf{u}_{j\neq c}^{(N)} - \delta = \mathbf{y}$$
(3)

Optimization

- $\mathbf{I}^{(N)}$ and $\mathbf{u}^{(N)}$ are differentiable w.r.t. ϵ .
- The relaxation problem is tractable

$$\min_{\boldsymbol{\epsilon}, \mathbf{y} \ge 0} \left\{ -\sum_{j=0}^{n_1-1} \log \epsilon_j \right\}$$
s.t. $l_c^{(N)} - \mathbf{u}_{j\neq c}^{(N)} - \delta = \mathbf{y}$
(3)

• The problem can be solved by Augmented Lagrangian Method

$$\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{\epsilon}, \mathbf{y} \ge 0} - \left(\sum_{j=0}^{n_1-1} \log \epsilon_j \right) + \langle \boldsymbol{\lambda}, \mathbf{v} - \mathbf{y} \rangle + \frac{\rho}{2} \|\mathbf{v} - \mathbf{y}\|_2^2$$
(4)

• **v** is defined as
$$l_c^{(N)} - \mathbf{u}_{j\neq c}^{(N)} - \delta$$

Dataset	Architecture	Training Method	Uniform	Non-uniform	Ratio
MNIST	100-100-100	-	0.0295	0.0349	1.183
		PGD, $\tau = 0.1$	0.0692	0.1678	2.425
	300-300-300	-	0.0309	0.0350	1.133
		PGD, $\tau = 0.1$	0.0507	0.1404	2.769
	500-500-500	-	0.0319	0.0360	1.129
		PGD, $\tau = 0.1$	0.0436	0.1167	2.677
Fashion-MNIST	1024-1024-1024	-	0.0397	0.0518	1.305
		PGD, $\tau = 0.1$	0.0446	0.1134	2.543
SVHN	1024-1024-1024	-	0.0022	0.0072	3.273
		PGD, $\tau = 0.1$	0.0054	0.0281	5.204

Table: Average of uniform and non-uniform bounds in the test sets.

• Larger volumes covered by non-uniform bounds, especially for robust models.

Experiments Robustness and Feature Selection

Figure: Examples of distributions of bounds for normal and robust models among all pixels. (Left: MNIST, Right: SVHN)

• Features of very large bounds \rightarrow Features dropped

Experiments Robustness and Interpretability

- We can visualize bounding map $\epsilon \in \mathbb{R}^n$ like an input data point.
- The bounding maps demonstrate better interpretability of robust models.

Figure: Left: between digit 1 and 7. Right: between digit 3 and 8. Lighter pixels mean smaller bounds.

- Welcome to Poster #63
- Code on GitHub: Certify_Nonuniform_Bounds

Liu et al. (EPFL)

Non-uniform Bounds

спасибо 谢谢 gracias 谢谢 THANK YOU abysic Singer Merci banke धन्यवाद ப் OBRIGADO

