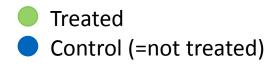
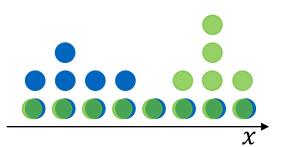


Active Learning for Decision-Making from Imbalanced Observational Data

11.06.2019

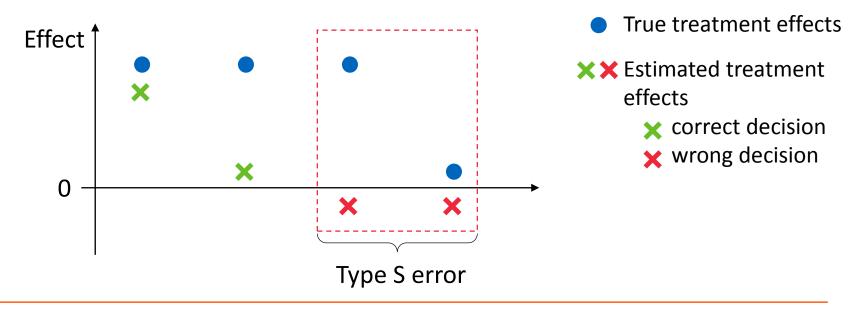
<u>liris Sundin</u>¹, Peter Schulam², Eero Siivola¹, Aki Vehtari¹, Suchi Saria², Samuel Kaski¹

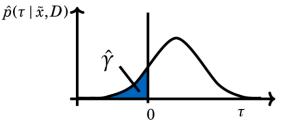

1. Department of Computer Science, Aalto University, Helsinki, Finland


2. Department of Computer Science, Johns Hopkins University, Baltimore, USA

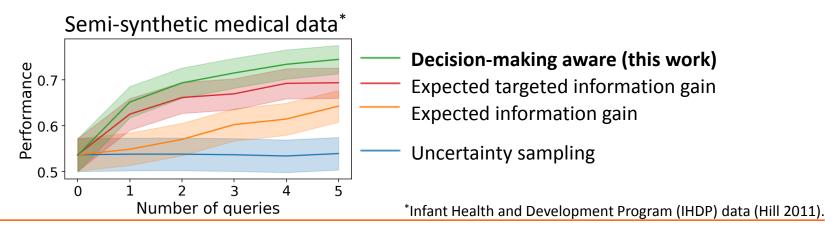
Poster #239

Problem and setup


- Decision-making task: Choose treatment to a new, previously unseen unit \tilde{x}
- Learn individual treatment effect $\tau = \mathbb{E}[y[1] y[0] \mid x]$
- Imbalance
 - Different covariate distributions in treated and control groups
 - Causes uncertainty to $\hat{p}(\tau \mid x, D)$


Decision-making performance

- Type S error rate
 - Probability that the model infers the sign of the treatment effect wrong



Contributions

- Conditions when imbalance increases Type S error rate
- Estimate for Type S error rate

• Active learning to minimize estimated Type S error rate

- Imbalance impairs decision-making performance
- Type S error rate
 - A natural measure for decision-making performance
- Bayesian estimate of Type S error rate
- Active learning that targets the Type S error rate the most effective in improving decisions
- Code available at https://github.com/lirisSundin/active-learning-for-decision-making