Rotation Invariant Householder Parameterization for Bayesian PCA

Rajbir-Singh Nirwan, Nils Bertschinger
June 11, 2019

FIAS Frankfurt Institute
for Advanced Studies

Outline

- Probabilistic PCA (PPCA)
- Non-identifiability issue of PPCA
- Conceptual solution to the problem
- Implementation
- Results

Probabilistic PCA

- Classical PCA

Formulated as a projection from data space \boldsymbol{Y} to a lower dimensional latent space \boldsymbol{X}

$$
Y \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
$$

Latent space: maximizes variance of projected data, minimizes MSE

Probabilistic PCA

- Classical PCA

Formulated as a projection from data space \boldsymbol{Y} to a lower dimensional latent space \boldsymbol{X}

$$
\boldsymbol{Y} \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
$$

Latent space: maximizes variance of projected data, minimizes MSE

- Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space \boldsymbol{X} to the data space \boldsymbol{Y}

$$
\begin{aligned}
& \boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D} \\
& \boldsymbol{Y}=\boldsymbol{X} \boldsymbol{W}^{T}+\boldsymbol{\epsilon} \\
& \boldsymbol{X} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}), \quad \epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
\end{aligned}
$$

$$
p(\boldsymbol{Y} \mid \boldsymbol{W})=\prod_{n=1}^{N} \mathscr{N}\left(\boldsymbol{Y}_{n,:} \mid \mathbf{0}, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2} \boldsymbol{I}\right)
$$

$$
\boldsymbol{W} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \quad \forall \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}
$$

Probabilistic PCA

- Classical PCA

Formulated as a projection from data space \boldsymbol{Y} to a lower dimensional latent space \boldsymbol{X}

$$
\boldsymbol{Y} \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
$$

Latent space: maximizes variance of projected data, minimizes MSE

- Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space \boldsymbol{X} to the data space \boldsymbol{Y}

$$
\begin{gathered}
\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D} \\
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{W}^{T}+\boldsymbol{\epsilon} \\
\boldsymbol{X} \sim \mathscr{N}(\mathbf{0}, \boldsymbol{I}), \quad \epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p(\boldsymbol{Y} \mid \boldsymbol{W})=\prod_{n=1}^{N} \mathcal{N}\left(\boldsymbol{Y}_{n,:} \mid \mathbf{0}, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2} \boldsymbol{I}\right) \\
\boldsymbol{W} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \quad \forall \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}
\end{gathered}
$$

- Optimization for $\mathrm{D}=5, \mathrm{Q}=2$

Probabilistic PCA

- Classical PCA

Formulated as a projection from data space \boldsymbol{Y} to a lower dimensional latent space \boldsymbol{X}

$$
\boldsymbol{Y} \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
$$

Latent space: maximizes variance of projected data, minimizes MSE

- Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space \boldsymbol{X} to the data space \boldsymbol{Y}

$$
\begin{gathered}
\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D} \\
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{W}^{T}+\boldsymbol{\epsilon} \\
\boldsymbol{X} \sim \mathscr{N}(\mathbf{0}, \boldsymbol{I}), \quad \epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p(\boldsymbol{Y} \mid \boldsymbol{W})=\prod_{n=1}^{N} \mathcal{N}\left(\boldsymbol{Y}_{n,:} \mid \mathbf{0}, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2} \boldsymbol{I}\right) \\
\boldsymbol{W} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \quad \forall \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}
\end{gathered}
$$

- Optimization for $\mathrm{D}=5, \mathrm{Q}=2$

Probabilistic PCA

- Classical PCA

Formulated as a projection from data space \boldsymbol{Y} to a lower dimensional latent space \boldsymbol{X}

$$
\boldsymbol{Y} \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
$$

Latent space: maximizes variance of projected data, minimizes MSE

- Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space \boldsymbol{X} to the data space \boldsymbol{Y}

$$
\begin{gathered}
\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D} \\
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{W}^{T}+\boldsymbol{\epsilon} \\
\boldsymbol{X} \sim \mathscr{N}(\mathbf{0}, \boldsymbol{I}), \quad \epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p(\boldsymbol{Y} \mid \boldsymbol{W})=\prod_{n=1}^{N} \mathcal{N}\left(\boldsymbol{Y}_{n,:} \mid \mathbf{0}, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2} \boldsymbol{I}\right) \\
\boldsymbol{W} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \quad \forall \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}
\end{gathered}
$$

- Optimization for $\mathrm{D}=5, \mathrm{Q}=2$

Probabilistic PCA

- Classical PCA

Formulated as a projection from data space \boldsymbol{Y} to a lower dimensional latent space \boldsymbol{X}

$$
\boldsymbol{Y} \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
$$

Latent space: maximizes variance of projected data, minimizes MSE

- Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space \boldsymbol{X} to the data space \boldsymbol{Y}

$$
\begin{gathered}
\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D} \\
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{W}^{T}+\boldsymbol{\epsilon} \\
\boldsymbol{X} \sim \mathscr{N}(\mathbf{0}, \boldsymbol{I}), \quad \epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p(\boldsymbol{Y} \mid \boldsymbol{W})=\prod_{n=1}^{N} \mathcal{N}\left(\boldsymbol{Y}_{n,:} \mid \mathbf{0}, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2} \boldsymbol{I}\right) \\
\boldsymbol{W} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \quad \forall \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}
\end{gathered}
$$

- Rotation invariant likelihood

Bayesian approach to PPCA

$$
p(\boldsymbol{W} \mid \boldsymbol{Y})=\frac{p(\boldsymbol{Y} \mid \boldsymbol{W}) p(\boldsymbol{W})}{p(\boldsymbol{Y})}
$$

- If prior does not break the symmetry, posterior will be rotation invariant as well
- Sampling will be challenging, posterior averages are meaningless and the interpretation of the latent space is almost impossible

Bayesian approach to PPCA

$$
p(\boldsymbol{W} \mid \boldsymbol{Y})=\frac{p(\boldsymbol{Y} \mid \boldsymbol{W}) p(\boldsymbol{W})}{p(\boldsymbol{Y})}
$$

- If prior does not break the symmetry, posterior will be rotation invariant as well
- Sampling will be challenging, posterior averages are meaningless and the interpretation of the latent space is almost impossible

Solution

- Find different parameterization of the model, such that the probabilistic model is not changed

Outline of procedure

- SVD of W
- Fix coordinate system
- Specify correct prior
- Sample from
$\boldsymbol{W} \boldsymbol{W}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{T}$
$V=I$
$p(\boldsymbol{U}, \boldsymbol{\Sigma})$
$p(\boldsymbol{U}, \boldsymbol{\Sigma} \mid \boldsymbol{Y})$

Solution

- Find different parameterization of the model, such that the probabilistic model is not changed

Outline of procedure

- SVD of W
- Fix coordinate system
- Specify correct prior
- Sample from
-

$$
\boldsymbol{W} \boldsymbol{W}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{T}
$$

$V=I$
$p(\boldsymbol{U}, \boldsymbol{\Sigma})$
$p(\boldsymbol{U}, \boldsymbol{\Sigma} \mid \boldsymbol{Y})$

$$
\begin{aligned}
& W \sim \mathscr{N}(\mathbf{0}, \boldsymbol{I}) \quad \rightarrow \quad W W^{T} \quad \text { is Wishart distributed } \\
& \boldsymbol{U} \sim ? \quad \rightarrow \quad \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T} \quad \text { is Wishart distributed } \\
& \boldsymbol{\Sigma} \sim ?
\end{aligned}
$$

Theory

- Since $\boldsymbol{U}, \boldsymbol{\Sigma}$ is SVD of \boldsymbol{W} and $\boldsymbol{U}, \boldsymbol{\Sigma}^{2}$ is eigenvalue decomposition of $\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{\top}} \rightarrow \boldsymbol{U}$ is eigenvector matrix

$$
\boldsymbol{U} \in \mathscr{V}_{Q, D} \quad \text { Stiefel manifold } \quad \mathscr{V}_{Q, D}=\left\{\boldsymbol{U} \in \mathbb{R}^{D \times Q} \mid \boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}\right\}
$$

Eigenvectors of Wishart matrix are distributed uniformly in space of orthogonal matrices (Blai (2007), Uhlig (1994))
$\rightarrow \boldsymbol{U}$ is uniformly distributed on the Stiefel manifold

Theory

- Since $\boldsymbol{U}, \boldsymbol{\Sigma}$ is SVD of \boldsymbol{W} and $\boldsymbol{U}, \boldsymbol{\Sigma}^{2}$ is eigenvalue decomposition of $\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{\top}} \rightarrow \boldsymbol{U}$ is eigenvector matrix

$$
\boldsymbol{U} \in \mathscr{V}_{Q, D} \quad \text { Stiefel manifold } \quad \mathscr{V}_{Q, D}=\left\{\boldsymbol{U} \in \mathbb{R}^{D \times Q} \mid \boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}\right\}
$$

Eigenvectors of Wishart matrix are distributed uniformly in space of orthogonal matrices (Blai (2007), Uhlig (1994))
$\rightarrow \boldsymbol{U}$ is uniformly distributed on the Stiefel manifold

- Square of ordered eigenvalue matrix $\boldsymbol{\Sigma}$ is distributed as (James \& Lee (2014))

$$
p(\lambda)=c e^{-\frac{1}{2} \sum_{q=1}^{Q} \lambda_{q}} \prod_{q=1}^{Q}\left(\lambda_{q}^{\frac{D-Q-1}{2}} \prod_{q^{\prime}=q+1}^{Q}\left|\lambda_{q}-\lambda_{q^{\prime}}\right|\right)
$$

$$
p\left(\sigma_{1}, \ldots, \sigma_{Q}\right)=c e^{-\frac{1}{2} \sum_{q=1}^{Q} \sigma_{q}^{2}} \prod_{q=1}^{Q}\left(\sigma_{q}^{D-Q-1} \prod_{q^{\prime}=q+1}^{Q}\left|\sigma_{q}^{2}-\sigma_{q^{\prime}}^{2}\right|\right) \prod_{q=1}^{Q} 2 \sigma_{q}
$$

Implementation

- Need:
$\boldsymbol{U} \sim$ uniform on Stiefel $\mathscr{V}_{Q, D}$
$\boldsymbol{\Sigma} \sim p(\boldsymbol{\Sigma}) \leftarrow$ easy, since we know the analytic exp for density

Theorem 2 Let $\boldsymbol{v}_{D}, \boldsymbol{v}_{D-1}, \ldots, \boldsymbol{v}_{1}$ be uniformly distributed on the unit spheres $\mathbb{S}^{D-1}, \ldots, \mathbb{S}^{0}$ respectively, where \mathbb{S}^{n-1} is the unit sphere in \mathbb{R}^{n}. Furthermore, let $\boldsymbol{H}_{n}\left(\boldsymbol{v}_{n}\right)$ be the n-th Householder transformation as defined in equation (2.20) The product

$$
\begin{equation*}
\boldsymbol{Q}=\boldsymbol{H}_{D}\left(\boldsymbol{v}_{D}\right) \boldsymbol{H}_{D-1}\left(\boldsymbol{v}_{D-1}\right) \ldots \boldsymbol{H}_{1}\left(\boldsymbol{v}_{1}\right) \tag{2.21}
\end{equation*}
$$

is a random orthogonal matrix with distribution given by the Haar measure on $O(D)$.

Mezzadri (2007)

How to uniformly sample \boldsymbol{U} on $\mathscr{V}_{Q, D}$

$$
\begin{aligned}
& \text { for } n=D: 1 \\
& \boldsymbol{v}_{n} \sim \text { uniform on } \mathbb{S}^{n-1} \\
& \boldsymbol{u}_{n}=\frac{\boldsymbol{v}_{n}+\operatorname{sgn}\left(\boldsymbol{v}_{n 1}\right)\left\|\boldsymbol{v}_{n}\right\| \boldsymbol{e}_{1}}{\left\|\boldsymbol{v}_{n}+\operatorname{sgn}\left(\boldsymbol{v}_{n 1}\right)\right\| \boldsymbol{v}_{n}\left\|\boldsymbol{e}_{1}\right\|} \\
& \tilde{\boldsymbol{H}}_{\boldsymbol{n}}\left(\boldsymbol{v}_{n}\right)=-\operatorname{sgn}\left(\boldsymbol{v}_{n 1}\right)\left(\boldsymbol{I}-2 \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{T}\right) \\
& \boldsymbol{H}_{n}=\left(\begin{array}{cc}
\boldsymbol{I} & \mathbf{0} \\
\mathbf{0} & \tilde{\boldsymbol{H}}_{\boldsymbol{n}}
\end{array}\right) \\
& \boldsymbol{U}=\boldsymbol{H}_{D}\left(\boldsymbol{v}_{D}\right) \boldsymbol{H}_{D-1}\left(\boldsymbol{v}_{D-1}\right) \ldots \boldsymbol{H}_{1}\left(\boldsymbol{v}_{1}\right)
\end{aligned}
$$

Implementation

The full generative model for Bayesian PPCA:

$$
\begin{aligned}
\boldsymbol{v}_{D}, \ldots, \boldsymbol{v}_{D-Q+1} & \sim \mathcal{N}(0, \boldsymbol{I}) \\
\boldsymbol{\sigma} & \sim p(\boldsymbol{\sigma}) \\
\boldsymbol{\mu} & \sim p(\boldsymbol{\mu}) \\
\boldsymbol{U} & =\prod_{q=1}^{Q} \boldsymbol{H}_{D-q+1}\left(\boldsymbol{v}_{D-q+1}\right) \\
\boldsymbol{\Sigma} & =\operatorname{diag}(\boldsymbol{\sigma}) \\
\boldsymbol{W} & =\boldsymbol{U} \boldsymbol{\Sigma} \\
\sigma_{\text {noise }} & \sim p(\sigma \text { noise }) \\
Y & \sim \prod_{n=1}^{N} \mathscr{N}\left(\boldsymbol{Y}_{n,:} \mid \boldsymbol{\mu}, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma_{\text {noise }}^{2} \boldsymbol{I}\right)
\end{aligned}
$$

Results

Synthetic Dataset

- Construction

$$
(N, D, Q)=(150,5,2)
$$

$$
\boldsymbol{X} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}) \in \mathbb{R}^{N \times Q}
$$

$$
\boldsymbol{U} \sim \text { uniform on Stiefel } \mathscr{V}_{Q, D}
$$

$$
\boldsymbol{\epsilon} \sim \mathcal{N}(0,0.01) \in \mathbb{R}^{N \times D}
$$

$$
\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}\right)=\operatorname{diag}(3.0,1.0)
$$

$$
\boldsymbol{W}=\boldsymbol{U} \boldsymbol{\Sigma} \in \mathbb{R}^{D \times Q}
$$

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{W}^{T}+\boldsymbol{\epsilon}
$$

- Inference

Results

Breast Cancer Wisconsin Dataset $\quad(N, D)=(569,30)$

- Bayesian PCA

- Advantages
- Breaks the rotation symmetry without changing the probabilistic model
- Enrichment of the classical PCA solution with uncertainty estimates
- Decomposition of prior into rotation and principle variances
- Allows to construct other priors without issues
- Sparsity prior on principle variances without a-priori rotation preference
- If desired a-priori rotation preference without affecting the variances

Extension to non-linear models

- GPLVM with the same rotation invariant problem

$$
\begin{aligned}
& p(\boldsymbol{Y} \mid \boldsymbol{X})=\prod_{d=1}^{D} \mathcal{N}\left(\boldsymbol{Y}_{;, d} \mid \boldsymbol{\mu}, \boldsymbol{K}+\sigma^{2} I\right) \\
& \boldsymbol{K}=\boldsymbol{X} \boldsymbol{X}^{T}, \quad \boldsymbol{K}_{i j}=\boldsymbol{X}_{i,:}^{T} \boldsymbol{X}_{j ;:}=k\left(\boldsymbol{X}_{i, j}, \boldsymbol{X}_{j ;:}\right) \\
& k_{\mathrm{SE}}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sigma_{\mathrm{SE}}^{2} \exp \left(-0.5\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2} / l^{2}\right)
\end{aligned}
$$

- No rotation symmetry in the posterior for the suggested parameterization
- Different chains converge to different solutions due to increased model complexity

Conclusion

- Suggested new parameterization for \boldsymbol{W} in PPCA, which uniquely identifies principle components even though the likelihood and the posterior are rotationally symmetric
- Showed how to set the prior on the new parameters such that the model is not changed compared to a standard Gaussian prior on \boldsymbol{W}
- Provided an efficient implementation via Householder transformations (no Jacobian correction needed)
- New parameterization allows for other interpretable priors on rotation and principle variances
- Extended to non-linear models and successfully solved the rotation problem there as well

Thanks for your attention!

Supervisor: Prof. Dr. Nils Bertschinger Funder: Dr. h. c. Helmut O. Maucher

