Bayesian leave-one-out cross-validation for large data

Måns Magnusson (Aalto University)

Michael Riis Andersen (Technical University of Denmark)

Johan Jonasson (University of Gothenburg)

Aki Vehtari (Aalto University)

DTU Compute

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}$ Department of Applied Mathematics and Computer Science

Motivation: Model selection for large data

- Bigger data sets and more complex models
- We still need to evaluate and compare models
- \bullet elpd $_M$ quantifies how model M generalizes to unseen data \tilde{y}_i

Leave-one-out cross-validation

- Basic idea: Hold out observation i and predict y_i based on y_{-i}
- Estimate $elpd_M$ using leave-one-out cross-validation (loo)

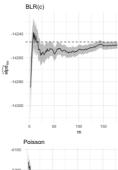
$$\overline{\mathsf{elpd}}_{\mathsf{loo}} = \frac{1}{n} \sum_{i=1}^{n} \log p_M(y_i | y_{-i}) = \frac{1}{n} \sum_{i=1}^{n} \log \int p_M(y_i | \theta) p_M(\theta | y_{-i}) d\theta$$

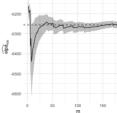
- Desirable properties
 - + almost unbiased for large \boldsymbol{n}
 - + straight-forward handling of hierarchical structures
- Two major problems
 - Need to fit the model \boldsymbol{n} times
 - Need to evaluate predictive densities \boldsymbol{n} times

Our contributions: Method

$$\overline{\mathsf{elpd}}_{\mathsf{loo}} = \frac{1}{n} \sum_{i=1}^{n} \log p_M(y_i | y_{-i})$$

- We propose a fast approximation for elpd_{loo}
 - **()** Approximate full data posterior $q_M(\theta|y)$ using Variational Bayes/Laplace
 - **2** Compute $p_M(y_i|y_{-i})$ using importance sampling with q_M as proposal
 - $\ensuremath{\mathfrak{S}}$ Subsample the sum over n using the Hansen-Hurwitz estimator
- Solves both problems with leave-one-out CV
 - 1 Only need to fit the model once on the full data set
 - **2** Predictive distributions $p_M(y_i|y_{-i})$ are only needed for a small subset


DTU


Our contributions: Results

• Theoretical results (under regularity conditions)

$$\widehat{\mathsf{elpd}}_{\mathsf{loo}} \xrightarrow{p} \overline{\mathsf{elpd}}_{\mathsf{loo}} \quad \text{for} \quad n \to \infty$$

- Extensive empirical results
 - 1 Variational Bayes, Laplace approx., MCMC
 - **2** Bayesian linear regression
 - **3** Hierarchical models
- For more details, come see us at poster #231
- Thank you for listening!

