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Learning in Reproducing Kernel Kreı̆n Spaces
Motivation

In learning problems with structured data (e.g., time-series, strings, graphs), it is relatively easy to devise a
pairwise (dis)similarity function based on intuition of a domain expert

To find an optimal hypothesis with standard kernel methods positive definiteness of the kernel/similarity func-
tion needs to be established

A large number of pairwise (dis)similarity functions devised by experts are indefinite

(e.g., edit distances for strings and graphs, dynamic time-warping algorithm, Wasserstein and Haussdorf distances)

Goal

Scalable kernel methods for learning with any notion of (dis)similarity between instances.

Kreı̆n Space (Bognár, 1974; Azizov & Iokhvidov, 1981)

The vector space K with a bilinear form 〈·, ·〉K is called Kreı̆n space if it admits a decomposition into a direct sum
K=H+ ⊕H− of 〈·, ·〉K-orthogonal Hilbert spacesH± such that 〈·, ·〉K can be written as

〈f ,g〉K =
〈
f+,g+

〉
H+
− 〈f−,g−〉H− ,

whereH± are endowed with inner products 〈·, ·〉H± , f = f+ ⊕ f−, g = g+ ⊕g−, and f±,g± ∈ H±.
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Learning in Reproducing Kernel Kreı̆n Spaces
Overview

Associated Hilbert Space

For a decomposition K=H+ ⊕H−, the Hilbert spaceHK =H+ ⊕H− endowed with inner product

〈f ,g〉HK =
〈
f+,g+

〉
H+

+ 〈f−,g−〉H− (f±,g± ∈ H±)
can be associated with K.

All the norms ‖·‖HK generated by different decompositions of K into direct sums of Hilbert spaces are topologi-

cally equivalent (Langer, 1962)

The topology on K defined by the norm of an associated Hilbert space is called the strong topology on K

∃f ∈ K : 〈f , f〉K < 0 =⇒ 〈f , f〉K = ‖f+‖2H+
− ‖f−‖2H− does not induce a norm on a reproducing kernel Kreı̆n space K

The complexity of hypotheses can be penalized via decomposition componentsH± and the strong topology

Scalability !

Computational and space complexities are often quadratic in the number of instances and in several ap-
proaches the computational complexity is cubic.
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Nyström Method for Indefinite Kernels
Overview

X is an instance space

X = {x1, . . . ,xn } is an independent sample from a probability measure defined on X
k : X ×X →� is a reproducing Kreı̆n kernel with k (x ,x ′) = 〈k (x , ·),k (x ′ , ·)〉K
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Nyström Method for Indefinite Kernels
Landmarks

Z = {z1, . . . ,zm } is a set of landmarks (not necessarily a subset of X )
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Nyström Method for Indefinite Kernels
Projections onto LZ = span({k (z1, ·) , · · · ,k (zm , ·)})

For a given set of landmarks Z , the Nyström method approximates the kernel matrix
K with a low-rank matrix K̃ given by K̃ij = k̃

(
xi ,xj

)
=

〈
k̃ (xi , ·), k̃

(
xj , ·

)〉
K

k (x , ·) = k̃ (x , ·)+ k⊥ (x , ·) with k̃ (x , ·) =
m¼
i=1

Ói ,xk (zi , ·) ∧
〈
k⊥ (x , ·),LZ

〉
K = 0
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Scalable Learning in Reproducing Kernel Kreı̆n Spaces
Contributions

First mathematically complete derivation of the Nyström method for indefinite kernels

An approach for efficient low-rank eigendecomposition of indefinite kernel matrices

Two effective landmark selection strategies for the Nyström method with indefinite kernels

Nyström-based scalable least squaresmethods for learning in reproducing kernel Kreı̆n spaces

Nyström-based scalable support vector machine for learning in reproducing kernel Kreı̆n spaces

Effective regularization via decomposition components H± and the strong topology

python package for learning in reproducing kernel Kreı̆n spaces

(in preparation, early version available upon request)
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