Scalable Learning in Reproducing Kernel Kreĭn Spaces

Dino Oglic ${ }^{1} \quad$ Thomas Gärtner ${ }^{2}$
1 Department of Informatics, King's College London
2 School of Computer Science, University of Nottingham

```
lNGGS
- College
LONDON
```


Learning in Reproducing Kernel Kreĭn Spaces

Motivation

In learning problems with structured data (e.g., time-series, strings, graphs), it is relatively easy to devise a pairwise (dis)similarity function based on intuition of a domain expert

To find an optimal hypothesis with standard kernel methods positive definiteness of the kernel/similarity function needs to be established

A large number of pairwise (dis)similarity functions devised by experts are indefinite
(e.g., edit distances for strings and graphs, dynamic time-warping algorithm, Wasserstein and Haussdorf distances)

GOAL

Scalable kernel methods for learning with any notion of (dis)similarity between instances.

Kreĭn Space (Bognár, 1974; Azizov \& lokhvidov, 1981)

The vector space \mathcal{K} with a bilinear form $\langle\cdot, \cdot\rangle_{\mathcal{K}}$ is called Kreĭn space if it admits a decomposition into a direct sum $\mathcal{K}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$of $\langle\cdot, \cdot\rangle_{\mathcal{K}}$-orthogonal Hilbert spaces $\mathcal{H}_{ \pm}$such that $\langle\cdot, \cdot\rangle_{\mathcal{K}}$ can be written as

$$
\langle f, g\rangle_{\mathcal{K}}=\left\langle f_{+}, g_{+}\right\rangle_{\mathcal{H}_{+}}-\left\langle f_{-}, g_{-}\right\rangle_{\mathcal{H}_{-}}
$$

where $\mathcal{H}_{ \pm}$are endowed with inner products $\langle\cdot, \cdot\rangle_{\mathcal{H}_{ \pm}}, f=f_{+} \oplus f_{-}, g=g_{+} \oplus g_{-}$, and $f_{ \pm}, g_{ \pm} \in \mathcal{H}_{ \pm}$.

Learning in Reproducing Kernel Kreĭn Spaces

Overview

Associated Hilbert Space
For a decomposition $\mathcal{K}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$, the Hilbert space $\mathcal{H}_{\mathcal{K}}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$endowed with inner product

$$
\langle f, g\rangle_{\mathcal{H}_{\mathcal{K}}}=\left\langle f_{+}, g_{+}\right\rangle_{\mathcal{H}_{+}}+\left\langle f_{-}, g_{-}\right\rangle_{\mathcal{H}_{-}} \quad\left(f_{ \pm}, g_{ \pm} \in \mathcal{H}_{ \pm}\right)
$$

can be associated with \mathcal{K}.

All the norms $\|\cdot\|_{\mathcal{H}_{\mathcal{K}}}$ generated by different decompositions of \mathcal{K} into direct sums of Hilbert spaces are topologically equivalent (Langer, 1962)

The topology on \mathcal{K} defined by the norm of an associated Hilbert space is called the strong topology on \mathcal{K}
$\exists f \in \mathcal{K}:\langle f, f\rangle_{\mathcal{K}}<0 \Longrightarrow\langle f, f\rangle_{\mathcal{K}}=\left\|f_{+}\right\|_{\mathcal{H}_{+}}^{2}-\left\|f_{-}\right\|_{\mathcal{H}_{-}}^{2}$ does not induce a norm on a reproducing kernel Kreĭn space \mathcal{K}

The complexity of hypotheses can be penalized via decomposition components $\mathcal{H}_{ \pm}$and the strong topology

Scalability !

Computational and space complexities are often quadratic in the number of instances and in several approaches the computational complexity is cubic.

Nyström Method for Indefinite Kernels

Overview

\mathcal{X} is an instance space
$X=\left\{x_{1}, \ldots, x_{n}\right\}$ is an independent sample from a probability measure defined on \mathcal{X} $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a reproducing Kreĭn kernel with $k\left(x, x^{\prime}\right)=\left\langle k(x, \cdot), k\left(x^{\prime}, \cdot\right)\right\rangle_{\mathcal{K}}$

Nyström Method for Indefinite Kernels

$Z=\left\{z_{1}, \ldots, z_{m}\right\}$ is a set of landmarks (not necessarily a subset of X)

Nyström Method for Indefinite Kernels

Projections onto $\mathcal{L}_{Z}=\operatorname{span}\left(\left\{k\left(z_{1}, \cdot\right), \cdots, k\left(z_{m}, \cdot\right)\right\}\right)$
For a given set of landmarks Z, the Nyström method approximates the kernel matrix K with a low-rank matrix \tilde{K} given by $\tilde{K}_{i j}=\tilde{k}\left(x_{i}, x_{j}\right)=\left\langle\tilde{k}\left(x_{i}, \cdot\right), \tilde{k}\left(x_{j}, \cdot\right)\right\rangle_{\mathcal{K}}$

$$
k(x, \cdot)=\tilde{k}(x, \cdot)+k^{\perp}(x, \cdot) \quad \text { with } \quad \tilde{k}(x, \cdot)=\sum_{i=1}^{m} \alpha_{i, x} k\left(z_{i}, \cdot\right) \wedge \quad\left\langle k^{\perp}(x, \cdot), \mathcal{L}_{Z}\right\rangle_{\mathcal{K}}=0
$$

$$
\tilde{K}=K_{n, m} K_{m, m}^{-1} K_{m, n}=\tilde{U}_{m} \tilde{\Lambda}_{m} \tilde{U}_{m}^{\top} \quad \text { with } \quad \tilde{U}_{m}^{\top} \tilde{U}_{m}=\Pi_{m}
$$

Scalable Learning in Reproducing Kernel Kreĭn Spaces

Contributions

First mathematically complete derivation of the Nyström method for indefinite kernels

An approach for efficient low-rank eigendecomposition of indefinite kernel matrices

Two effective landmark selection strategies for the Nyström method with indefinite kernels

Nyström-based scalable least squares methods for learning in reproducing kernel Kreĭn spaces

Nyström-based scalable support vector machine for learning in reproducing kernel Kreĭn spaces

Effective regularization via decomposition components $\mathcal{H}_{ \pm}$and the strong topology

PYTHON package for learning in reproducing kernel Kreĭn spaces
(in preparation, early version available upon request)

