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Kernel Density Function

P = {x1, . . . , xn} ⊂ Rd , k : Rd × Rd → R+, u ≥ 0, query point q

KDFP(q) =
n∑

i=1

(
1

n

)
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Kernel Density Evaluation

P = {x1, . . . , xn} ⊂ Rd , k : Rd × Rd → R+, u ≥ 0, query point q

KDFu
P(q) =

n∑
i=1

uik(xi , q)

Where is it used?

1 Non-parametric density estimation KDFP(q)

2 Kernel methods f (x) =
∑

i αiφ(‖x − xi‖)
3 Comparing point sets (distributions) with “Kernel Distance”
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P = {x1, . . . , xn} ⊂ Rd , k : Rd × Rd → R+, u ≥ 0, query point q

KDFu
P(q) =

n∑
i=1

uik(xi , q)

Where is it used?

1 Non-parametric density estimation KDFP(q)

2 Kernel methods f (x) =
∑

i αiφ(‖x − xi‖)
3 Comparing point sets (distributions) with “Kernel Distance”

Evaluating at a single point requires O(n)
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Kernel Density Evaluation

P = {x1, . . . , xn} ⊂ Rd , k : Rd × Rd → R+, u ≥ 0, query point q

KDFu
P(q) =

n∑
i=1

uik(xi , q)

Where is it used?

1 Non-parametric density estimation KDFP(q)

2 Kernel methods f (x) =
∑

i αiφ(‖x − xi‖)
3 Comparing point sets (distributions) with “Kernel Distance”

How fast can we approximate KDF?
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Methods for Fast Kernel Evaluation

P ⊂ Rd , ε > 0⇒ (1± ε)-approx to µ := KDFP(q) for any q ∈ Rd

Space Partitions
log(1/µε)O(d)

FMM
[Greengard,
Rokhlin’87]

Dual-Tree [Lee,
Gray, Moore’06]

FIG-Tree
[Moriaru et al.
NeurIPS’09]

Slow in high dim
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Methods for Fast Kernel Evaluation

P ⊂ Rd , ε > 0⇒ (1± ε)-approx to µ := KDFP(q) for any q ∈ Rd

Space Partitions
log(1/µε)O(d)

img: computer.org

Slow in high dim

Hashing
O(1/

√
µε2)

Hashing-Based-
Estimators
[Charikar, S’17]

Similar idea:

Locality Senstive
Samplers
[Spring,
Shrivastava ’17]

Sub-linear in 1/µ

Random Sampling
1/µε2

Linear in 1/µ
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Methods for Fast Kernel Evaluation

P ⊂ Rd , ε > 0⇒ (1± ε)-approx to µ := KDFP(q) for any q ∈ Rd

Space Partitions
log(1/µε)O(d)

img: computer.org

Slow in high dim

Hashing
O(1/

√
µε2)

Importance Sampling
via Randomized

Space Partitions

Sub-linear in 1/µ

Random Sampling
1/µε2

Linear in 1/µ
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Randomized Space Partitions

Distribution H over partitions h : Rd → [M]



Intro Contribution Sketching Diagnostics Evaluation Conclusion

Randomized Space Partitions

Distribution H over partitions h : Rd → [M]

h1

h4

h2

h5

h3

h6
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Locality Sensitive Hashing

Partitions H such Ph∼H[h(x) = h(y)] = p(‖x − y‖)
Euclidean LSH [Datar, Immorlika, Indyk, Mirrokni’04]

Concatenate k hashes
pk(‖x − y‖)
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Preprocess: Sample h1, . . . , hm ∼ H and evaluate on P

Query: Ht(q) hash-bucket for q in table t
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[Charikar, S. FOCS’17]

Preprocess: Sample h1, . . . , hm ∼ H and evaluate on P

Query: Ht(q) hash-bucket for q in table t

· · ·

Estimator: Sample random point X t from Ht(q) and return:

Zm =
1

m

m∑
t=1

1

n

k(X t , q)

p(X t , q)/|Ht(q)|
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Hashing-Based-Estimators

[Charikar, S. FOCS’17]

Preprocess: Sample h1, . . . , hm ∼ H and evaluate on P

Query: Ht(q) hash-bucket for q in table t

· · ·

Estimator: Sample random point X t from Ht(q) and return:

Zm =
1

m

m∑
t=1

1

n

k(X t , q)

p(X t , q)/|Ht(q)|

How many samples m? which LSH?
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Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]

For certain kernels HBE solves the kernel evaluation problem for
µ ≥ τ using O(1/

√
µε2) samples and O(n/

√
τε2) space.

Kernel LSH Overhead

e−‖x−y‖
2

Ball Carving [Andoni, Indyk’06] eÕ(log
2
3 (n))

e−‖x−y‖ Euclidean [Datar et al’04]
√
e

1
1+‖x−y‖t2

Euclidean [Datar et al’04] 3t/2
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⇒ large-constant + stringent requirements on hash functions.
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2
3 (n))



Intro Contribution Sketching Diagnostics Evaluation Conclusion

Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]

For certain kernels HBE solves the kernel evaluation problem for
µ ≥ τ using O(1/

√
µε2) samples and O(n/

√
τε2) space.

Practical Limitations:

1 Super-linear Space ⇒ Not practical for massive datasets

2 Uses Adaptive procedure to estim. number of samples:
⇒ large-constant + stringent requirements on hash functions.

3 Gaussian kernel Ball-Carving LSH very slow eÕ(log
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Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]

For certain kernels HBE solves the kernel evaluation problem for
µ ≥ τ using O(1/

√
µε2) samples and O(n/

√
τε2) space.

Practical Limitations:

1 Super-linear Space ⇒ Not practical for massive datasets

2 Uses Adaptive procedure to estim. number of samples:
⇒ large-constant + stringent requirements on hash functions.

3 Gaussian kernel Ball-Carving LSH very slow eÕ(log
2
3 (n))

Q: Practical HBE + preserve theoretical guarantees?
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Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:

1 super-linear space!

2 Adaptive procedure has
large constant overhead.

3 Gaussian Kernel
Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:

1 Sketching (sub-linear space)

2 Improved Adaptive
procedure + New Analysis

3 Practical HBE for Gaussian
Kernel via Eulcidean LSH
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Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:

1 super-linear space!

2 Adaptive procedure has
large constant overhead.

3 Gaussian Kernel
Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:

1 Sketching (sub-linear space)

2 Improved Adaptive
procedure + New Analysis

3 Practical HBE for Gaussian
Kernel via Eulcidean LSH

[S.*, Rong*, Bailis, Charikar, Levis ICML’19]
First Practical and Provably Accurate Algorithm for

Gaussian Kernel in High Dimensions
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Worst-case bounds can be misleading

Worst-case bounds do not always reflect reality

Random Sampling

good: O(1) samples bad: O(1/µ) samples
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Going back a step

Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH

Q2: Is it always better to use?

No: worst-case insufficient to predict performance on a dataset.

[This work ICML’19]
Diagnostic tools to estimate dataset-specific performance even

without evaluating HBE
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Outline of the rest of the talk

1 Sketching

2 Diagnostic tools

3 Experimental evaluation
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How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

1 Random points:
⇒ some buckets might have
0 points in sketch.

2 point from each bucket:
⇒ might need a large
number of points

Idea: interpolate between uniform points vs uniform over buckets!

Solution: hashing+ non-uniform sampling
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h0 evaluate on P
S ← ∅.
for j = 1, . . . , SketchSize:

Sample bucket i prob. ∝ ni
γ

Sample a random point J
from bucket i : S ← S ∪ {J}
Weight it so that
EJ [ŵJk(q, xJ)] ∝ KDFP(q)

return (ŵ , S)
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h0 evaluate on P

Theorem: O(1/τ) points suffice.

Approx. any density µ ≥ τ .

Reduce space from
O(n/

√
τ) to O(1/

√
τ3)

Contains a point from any
bucket with ≥ n · τ points
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Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h0 evaluate on P

Theorem: O(1/τ) points suffice.

Approx. any density µ ≥ τ .

Reduce space from
O(n/

√
τ) to O(1/

√
τ3)

Contains a point from any
bucket with ≥ n · τ points

Sub-linear space: e.g τ = 1√
n

we get n5/4 → n3/4



Intro Contribution Sketching Diagnostics Evaluation Conclusion

Diagnostic tools
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Variance of Unbiased Estimators

Unbiased estimators: Random Sampling, HBE

Metric of interest is average relative variance:

Eq∼P

[
V[Z (q)]

E[Z (q)]2

]
∝ “Sample Complexity”

Diagnostic Procedure

1 Sample a number T of random queries from P.

2 For each ⇒ upper bound Relative Variance

3 Average for each method of interest over T queries.

Estimate mean and bound Variance
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Bounding the variance

Variance is a “quadratic polynomial” of wi = k(q, xi )

V[Z ] ≤ 1

n2

n∑
i ,j=1

w2
i Vij
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Bounding the variance

Variance is a “quadratic polynomial” of wi = k(q, xi )

V[Z ] ≤ 1

n2

n∑
i ,j=1

w2
i Vij

Random Sampling (RS)

E[k2(q,X )] =
1

n2

n∑
i ,j=1

w2
i

Vij = 1

HBE collision prob. p(x , y)

E[Z 2] ≤ 1

n2

n∑
i ,j=1

w2
i Vij

Vij =
min{p(q,xi ),p(q,xj )}

p2(q,xi )

Evaluating variance naively requires O(n) or O(n2) per query
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Bounding the variance

Variance is a “quadratic polynomial” of wi = k(q, xi )

V[Z ] ≤ 1

n2

n∑
i ,j=1

w2
i Vij

Random Sampling (RS)

E[k2(q,X )] =
1

n2

n∑
i ,j=1

w2
i

Vij = 1

HBE collision prob. p(x , y)

E[Z 2] ≤ 1

n2

n∑
i ,j=1

w2
i Vij

Vij =
min{p(q,xi ),p(q,xj )}

p2(q,xi )

Q: Efficient alternative?
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Data-dependent Variance Bounds

Variance is a “quadratic polynomial” of wi = k(q, xi )

V[Z ] ≤ 1

n2

n∑
i ,j=1

w2
i Vij

Decompose in 4 sets

→

For two sets S`,S`′ :∑
i∈S`,j∈S`′

w2
i Vij

≤ sup
i∈S`,j∈S`′

{wi

wj
Vij}µ`µ`′

(Hölder)

→

Diagnostic

1 bnd
(4
2

)
terms

2 Evaluate on
subsample S0

3 Produced by
RS and Adapt.
Algorithm
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Evaluation
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Algorithms for Kernel Evaluation

Random Sampling (RS):
sensitive to range of kernel values (distances).

Hashing-Based-Estimators (HBE):
sensitive to “correlations” (dense distant clusters)
[Charikar, S. FOCS’2017][This work ICML’2019]

Fast Improved Gauss Transform (FIGTree):
sensitive to #“clusters” (directions) at certain distance
[Morariu,Srinivasan,Raykar, Duraiswami, Davis, NeurIPS’2009]

Approximate Skeletonization via Treecodes (ASKIT)
sensitive to “medium” distance scale/size clusters
[March, Xiao, Biros, SIAM JSC 2015]

Compare performance on Real-world datasets
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Comparison on Real-world Datasets

HBE is consistently best or second-best method
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Comparison on Real-world Datasets

HBE is consistently best or second-best method

Diagnostic correctly (21/22) choses between RS and HBE
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Benchmark Instances

Synthetic Benchmarks:

1 Worst-case: no single geometric aspect can be exploited!

2 D-clusters: gauge impact of different geometric aspects.
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Worst-case Instances

Union of highly-clustered with uncorrelated points

(fixed µ = 10−3, dimension d ∈ [10, 500], 100K queries)

10 50 100 200 500
# dimensions

10−2

10−1

100

Av
g 

Qu
er

y 
Ti

m
e 

(s
)

FigTree ASKIT RS HBE

“Worst-case” data sets

HBE best

ASKIT second best

Instance d = 2
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Instances with D clusters

Fix N = n · D = 500K , vary D ∈ [1, 105]

100 101 102 103 104 105

# clusters

10−4

10−3

10−2

10−1

Av
g 

Qu
er

y 
Ti

m
e 

(s
)

FigTree HBE RS

FigTree ASKIT RS HBE

D-structured datasets:

D �
√
N: space partitions

D ∼ N1−δ: Random Samp.

1� D � N: HBE
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Conclusion

Rehashing Kernel Evaluation in High Dimensions

Hashing-Based-Estimators:

1 made practical + often state-of-the-art + worst-case guarant.
2 data-dependent diagnostics: when to use & how to tune

“Rehashing” methodology
Open Source Implementation and Experiments

(https://github.com/kexinrong/rehashing)

Sketch

→

Diagnostics

→

Visualization

→ Config file
(deployment)

Thank you!
psimin@stanford.edu

https://github.com/kexinrong/rehashing
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