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Regularization in Deep Learning

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

Questions:
Can regularization address this?

min
f

1
n

n∑
i=1

`(yi , f (xi )) + λΩ(f )

What is a good choice of Ω(f ) for deep (convolutional) networks?
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Regularization with the RKHS Norm
Kernel methods: f (x) = 〈f ,Φ(x)〉H

Φ(x) captures useful properties of the data
‖f ‖H controls model complexity and smoothness:

|f (x)− f (y)| ≤ ‖f ‖H · ‖Φ(x)− Φ(y)‖H

Our work: view generic CNN fθ as an element of a RKHS H and regularize using ‖fθ‖H

Kernels for deep convolutional architectures (Bietti and Mairal, 2019):
‖Φ(x)− Φ(y)‖H ≤ ‖x − y‖2
‖Φ(xτ )− Φ(x)‖H ≤ C(τ) for a small transformation xτ of x
CNNs fθ with ReLUs are (approximately) in the RKHS with norm

‖fθ‖2H ≤ ω(‖W1‖2, . . . , ‖WL‖2).
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Approximating the RKHS norm

Our approach: use upper and lower bound approximations of ‖f ‖H

Upper bound: constraint/penalty on spectral norms
Lower bounds: use ‖f ‖H = sup‖u‖H≤1〈f , u〉H
=⇒ consider tractable subsets of the RKHS unit ball

‖f ‖H ≥ sup
x ,‖δ‖≤1

(adversarial perturbations)

‖f ‖H ≥ sup
x ,C(τ)≤1

f (xτ )− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches
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More Perspectives and Experiments
Regularization approaches

Unified view on various existing strategies, including links with robust optimization

Theoretical insights
Guarantees on adversarial generalization with margin bounds
Insights on regularization for training generative models

Experiments
Improved performance on small data scenarios in vision and biological datasets
Robustness benefits with large adversarial perturbations
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