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Kernel exponential families

e (Classic exponential family:

pp(x)=exp({ n , T(X) )ps) a(x) / Z(n)
——

natural sufficient base normalizer
parameter statistic measure

= Gaussian: T'(xz) = [z z? |
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Why kernel exponential families
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Why kernel exponential families

ps(x) = exp(f(x)) a(x)/Z(f)

e Any density with logp — logq € ‘H

e Much richer class; e.g. with Gaussian k, dense in all
continuous distributions on compact domains

e Fit with score matching
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Choosing a kernel with meta-learning

e Fit quality depends a lot on kernel choice
= Also on the regularization weight

e Need to fit these parameters
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Choosing a kernel with meta-learning

e Fit quality depends a lot on kernel choice
= Also on the regularization weight

e Need to fit these parameters
e ... but need to use held-out data to avoid trivially overfitting

e Meta-learning: take Vg of whole fit on a minibatch

1 1 \ °
N%}ég K—i— 5 (}élog Pe n}) ]
® @ /o @

Pick minibatches Eval on separate data

Learning deep kernels for exponential family densities Poster #221




Deep kernels

e Simple kernels, e.g. e:scp(—zL2 |x — Y||2), aren't enough:
o
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e But we can learn lots of parameters with gradient descent:

k(x,y) = ktop ((x), 6(y))

with ¢ a neural net, kiop something simple
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Deep kernels

e Simple kernels, e.g. e:scp(—zL2 |x — Y||2), aren't enough:
o

0.8 A —— true pdf | 1 —— true pdf

Combining a deep architecture with a kernel machine that takes the
higher-level learned representation as input can be quite powerful.

— Y. Bengio &Y. LeCun, “Scaling Learning Algorithms towards Al”, 2007
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e But we can learn lots of parameters with gradient descent:

k(x,y) = ktop ((x), 6(y))

with ¢ a neural net, kiop something simple
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http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf

Results

e Learns |local dataset geometry: better fits

e On real data: slightly worse likelihoods, maybe better
“shapes” than deep likelihood models
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