Learning Deep Kernels for Exponential Family Densities

<u>Li K. Wenliang</u> <u>D. J. Sutherland</u> H. Strathmann A. Gretton Gatsby unit, University College London

• Classic exponential family:

• Gaussian:
$$T(x) = \left[egin{array}{cc} x & x^2 \end{array}
ight]$$

• Classic exponential family:

• Gaussian:
$$T(x) = \left[egin{array}{cc} x & x^2 \end{array}
ight]$$

• Fit depends only on $\mathbb{E}_X \, T(X)$ (and q)

• Classic exponential family:

• Gaussian:
$$T(x) = \left[egin{array}{cc} x & x^2 \end{array}
ight]$$

- Fit depends only on $\mathbb{E}_X \, T(X)$ (and q)
- Kernel exponential family: $T(\mathbf{x}) = k(\mathbf{x}, \cdot) \in \mathcal{H}$

• Classic exponential family:

• Gaussian:
$$T(x) = \left[egin{array}{cc} x & x^2 \end{array}
ight]$$

- Fit depends only on $\mathbb{E}_X \, T(X)$ (and q)
- Kernel exponential family: $T(\mathbf{x}) = k(\mathbf{x}, \cdot) \in \mathcal{H}$
 - Reproducing property: $\langle f, k(\mathbf{x}, \cdot)
 angle_{\mathcal{H}} = f(\mathbf{x})$

Learning deep kernels for exponential family densities

• Classic exponential family:

• Gaussian:
$$T(x) = \left[egin{array}{cc} x & x^2 \end{array}
ight]$$

- Fit depends only on $\mathbb{E}_X \, T(X)$ (and q)
- Kernel exponential family: $T(\mathbf{x}) = k(\mathbf{x}, \cdot) \in \mathcal{H}$
 - Reproducing property: $\langle f, k(\mathbf{x}, \cdot)
 angle_{\mathcal{H}} = f(\mathbf{x})$

• So
$$p_f(\mathbf{x}) = \exp(f(\mathbf{x}))q(\mathbf{x})/Z(f)$$

$$p_f(\mathbf{x}) = \expig(f(\mathbf{x})ig) \, q(\mathbf{x})/Z(f)$$

Learning deep kernels for exponential family densities

$$p_f(\mathbf{x}) = \expig(f(\mathbf{x})ig) \, q(\mathbf{x})/Z(f)$$

• Any density with $\log p - \log q \in \mathcal{H}$

Learning deep kernels for exponential family densities

$$p_f(\mathbf{x}) = \expig(f(\mathbf{x})ig) \, q(\mathbf{x})/Z(f)$$

- Any density with $\log p \log q \in \mathcal{H}$
- *Much* richer class; e.g. with Gaussian k, dense in all continuous distributions on compact domains

$$p_f(\mathbf{x}) = \expig(f(\mathbf{x})ig) \, q(\mathbf{x})/Z(f)$$

- Any density with $\log p \log q \in \mathcal{H}$
- *Much* richer class; e.g. with Gaussian k, dense in all continuous distributions on compact domains

$$p_f(\mathbf{x}) = \expig(f(\mathbf{x})ig) \, q(\mathbf{x})/Z(f)$$

- Any density with $\log p \log q \in \mathcal{H}$
- *Much* richer class; e.g. with Gaussian k, dense in all continuous distributions on compact domains

$$p_f(\mathbf{x}) = \expig(f(\mathbf{x})ig) \, q(\mathbf{x})/Z(f)$$

- Any density with $\log p \log q \in \mathcal{H}$
- *Much* richer class; e.g. with Gaussian k, dense in all continuous distributions on compact domains
- Fit with score matching

$$\min_{f} \mathbb{E} \left[\sum_{d=1}^{D} rac{\partial^2}{\partial X_d^2} \log p_f(X) + rac{1}{2} \left(rac{\partial}{\partial X_d} \log p_f(X)
ight)^2
ight]$$

Learning deep kernels for exponential family densities

Choosing a kernel with meta-learning

- Fit quality depends a lot on kernel choice
 - Also on the regularization weight
- Need to fit these parameters

Choosing a kernel with meta-learning

- Fit quality depends a lot on kernel choice
 - Also on the regularization weight
- Need to fit these parameters
- ... but need to use held-out data to avoid trivially overfitting

Choosing a kernel with meta-learning

- Fit quality depends a lot on kernel choice
 - Also on the regularization weight
- Need to fit these parameters
- ... but need to use held-out data to avoid trivially overfitting
- Meta-learning: take $abla_ heta$ of whole fit on a minibatch

Deep kernels

• Simple kernels, e.g. $\exp\left(-\frac{1}{2\sigma^2}\|\mathbf{x}-\mathbf{y}\|^2\right)$, aren't enough:

Learning deep kernels for exponential family densities

Deep kernels

• Simple kernels, e.g. $\exp\left(-\frac{1}{2\sigma^2}\|\mathbf{x}-\mathbf{y}\|^2\right)$, aren't enough:

• But we can learn lots of parameters with gradient descent:

$$k(\mathbf{x},\mathbf{y}) = k_{ ext{top}}\left(oldsymbol{\phi}(\mathbf{x}),oldsymbol{\phi}(\mathbf{y})
ight)$$

with $oldsymbol{\phi}$ a neural net, $k_{
m top}$ something simple

Learning deep kernels for exponential family densities

Deep kernels

• Simple kernels, e.g. $\exp\left(-\frac{1}{2\sigma^2}\|\mathbf{x}-\mathbf{y}\|^2\right)$, aren't enough:

• But we can learn lots of parameters with gradient descent:

$$k(\mathbf{x},\mathbf{y}) = k_{ ext{top}}\left(oldsymbol{\phi}(\mathbf{x}),oldsymbol{\phi}(\mathbf{y})
ight)$$

with $oldsymbol{\phi}$ a neural net, $k_{
m top}$ something simple

Results

• Learns local dataset geometry: better fits

• On real data: slightly worse likelihoods, maybe better "shapes" than deep likelihood models

Results

• Learns local dataset geometry: better fits

• On real data: slightly worse likelihoods, maybe better "shapes" than deep likelihood models

Results

• Learns local dataset geometry: better fits

• On real data: slightly worse likelihoods, maybe better "shapes" than deep likelihood models

