Correlated Variational Auto-Encoders

${\sf Da} \ {\sf Tang}^1 \quad {\sf Dawen} \ {\sf Liang}^2 \quad {\sf Tony} \ {\sf Jebara}^{1,2} \quad {\sf Nicholas} \ {\sf Ruozzi}^3$

¹Columbia University

²Netflix Inc.

³The University of Texas at Dallas

June 11, 2019

Variational Auto-Encoders (VAEs)

▶ Learn stochastic low dimensional latent representations for high dimensional data:

Variational Auto-Encoders (VAEs)

▶ Learn stochastic low dimensional latent representations for high dimensional data:

Model the likelihood and the inference distribution independent among data points in the objective (the ELBO):

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{ heta}) = \sum_{i=1}^{n} (\mathbb{E}_{q_{\boldsymbol{\lambda}}(\boldsymbol{z}_i | \boldsymbol{x}_i)} [\log p_{\boldsymbol{ heta}}(\boldsymbol{x}_i | \boldsymbol{z}_i)] - \mathsf{KL}(q_{\boldsymbol{\lambda}}(\boldsymbol{z}_i | \boldsymbol{x}_i) || p_0(\boldsymbol{z}_i))).$$

▶ VAEs assume the prior is i.i.d. among data points.

- ▶ VAEs assume the prior is i.i.d. among data points.
- If we know information about correlations between data points (e.g., networked data), we can incorporate it into the generative process of VAEs.

• Given an undirected correlation graph G = (V, E) for data $\mathbf{x}_1, \ldots, \mathbf{x}_n$, where $V = \{v_1, \ldots, v_n\}$ and $E = \{(v_i, v_j) : \mathbf{x}_i \text{ and } \mathbf{x}_j \text{ are correlated}\}.$

- Given an undirected correlation graph G = (V, E) for data x_1, \ldots, x_n , where $V = \{v_1, \ldots, v_n\}$ and $E = \{(v_i, v_j) : x_i \text{ and } x_j \text{ are correlated}\}.$
- Directly applying a correlated prior of z = (z₁,..., z_n) on general undirected graphs is hard.

Define the prior of z as a uniform mixture over all *Maximal Acyclic Sub*graphs of G:

$$p_0^{\mathrm{corr}_{g}}(oldsymbol{z}) = rac{1}{|\mathcal{A}_G|}\sum_{G'=(V,E')\in\mathcal{A}_G}p_0^{G'}(oldsymbol{z}).$$

We apply a uniform mixture over acyclic subgraphs since we have closedform correlated distributions for acyclic graphs:

$$p_0^{G'}(m{z}) = \prod_{i=1}^n p_0(m{z}_i) \prod_{(m{v}_i,m{v}_j)\in E'} rac{p_0(m{z}_i,m{z}_j)}{p_0(m{z}_i)p_0(m{z}_j)}$$

We apply a uniform mixture over acyclic subgraphs since we have closedform correlated distributions for acyclic graphs:

$$p_0^{G'}(\mathbf{z}) = \prod_{i=1}^n p_0(\mathbf{z}_i) \prod_{(v_i, v_j) \in E'} \frac{p_0(\mathbf{z}_i, \mathbf{z}_j)}{p_0(\mathbf{z}_i) p_0(\mathbf{z}_j)}$$

We apply a uniform mixture over acyclic subgraphs since we have closedform correlated distributions for acyclic graphs:

$$p_0^{G'}({m z}) = \prod_{i=1}^n p_0({m z}_i) \prod_{({m v}_i,{m v}_j)\in E'} rac{p_0({m z}_i,{m z}_j)}{p_0({m z}_i)p_0({m z}_j)},$$

Define a new ELBO for general graphs:

$$egin{aligned} &\log p_{m{ heta}}(m{x}) = \log \mathbb{E}_{p_0^{\mathrm{corr}_{g}}(m{z})}[p_{m{ heta}}(m{x}|m{z})] \ &\geq & rac{1}{|\mathcal{A}_G|} \sum_{G' \in \mathcal{A}_G} \left(\mathbb{E}_{q_{m{\lambda}}^{G'}(m{z}|m{x})}[\log p_{m{ heta}}(m{x}|m{z})] - \mathsf{KL}(q_{m{\lambda}}^{G'}(m{z}|m{x}))|p_0^{G'}(m{z}))
ight) \ &:= & \mathcal{L}(m{\lambda},m{ heta}) \end{aligned}$$

where $q_{\lambda}^{G'}$ is defined in the same way as for the priors:

$$q_{\boldsymbol{\lambda}}^{G'}(\boldsymbol{z}) = \prod_{i=1}^n q_{\boldsymbol{\lambda}}(\boldsymbol{z}_i|\boldsymbol{x}_i) \prod_{(\boldsymbol{v}_i, \boldsymbol{v}_j) \in E'} rac{q_{\boldsymbol{\lambda}}(\boldsymbol{z}_i, \boldsymbol{z}_j|\boldsymbol{x}_i, \boldsymbol{x}_j)}{q_{\boldsymbol{\lambda}}(\boldsymbol{z}_i|\boldsymbol{x}_i)q_{\boldsymbol{\lambda}}(\boldsymbol{z}_j|\boldsymbol{x}_j)}.$$

Inference with a Weighted Objective

► The loss function is intractable due to the potentially exponential many subgraphs.

Inference with a Weighted Objective

- ► The loss function is intractable due to the potentially exponential many subgraphs.
- Represent the average loss on acyclic subgraphs as a weighted average loss on edges.

Inference with a Weighted Objective

- ► The loss function is intractable due to the potentially exponential many subgraphs.
- Represent the average loss on acyclic subgraphs as a weighted average loss on edges.

► The weighted loss is tractable. The weights can be computed from the pseudo-inverse of the Laplacian matrix of *G*.

Table: L	ink	prediction	test	NCRR
----------	-----	------------	------	------

Method	Test NCRR
VAE GraphSAGE	$\begin{array}{c} 0.0052 \pm 0.0007 \\ 0.0115 \pm 0.0025 \end{array}$
CVAE	$\textbf{0.0171} \pm \textbf{0.0009}$

Table: Spectral clustering scores

Method	NMI scores	
VAE	0.0031 ± 0.0059	
GraphSAGE	0.0945 ± 0.0607	
CVAE	$\textbf{0.2748} \pm \textbf{0.0462}$	

Table: User matching test RR

Method	Test RR
VAE CVAE	$\begin{array}{c} 0.3498 \pm 0.0167 \\ \textbf{0.7129} \pm \textbf{0.0096} \end{array}$

 CVAE accounts for correlations between data points that are known a priori. It can adopt a correlated variational density function to achieve a better variational approximation.

- CVAE accounts for correlations between data points that are known a priori. It can adopt a correlated variational density function to achieve a better variational approximation.
- ► Future work includes extending to correlated VAEs with higher-order correlations.

Thanks!

Poster #219

Code available at https://github.com/datang1992/Correlated-VAEs.