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Variational Auto-Encoders (VAEs)

I Learn stochastic low dimensional latent representations for high dimensional data:

qλ(z	|	x) pθ(x	|	z) 

Data		x Latent	representa3on	z Reconstruc3on	x ⌃ 

I Model the likelihood and the inference distribution independent among data
points in the objective (the ELBO):

L(λ,θ) =
n∑

i=1

(Eqλ(zi |xi ) [log pθ(xi |zi )]− KL(qλ(zi |xi )||p0(zi ))).
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Motivation

I VAEs assume the prior is i.i.d. among data points.

I If we know information about correlations between data points (e.g., networked
data), we can incorporate it into the generative process of VAEs.
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Learning with a Correlation Graph

I Given an undirected correlation graph G = (V ,E ) for data x1, . . . , xn, where
V = {v1, . . . , vn} and E = {(vi , vj) : xi and xj are correlated}.

I Directly applying a correlated prior of z = (z1, . . . , zn) on general undirected
graphs is hard.
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Correlated Priors

… 

Define the prior of z as a uniform
mixture over all Maximal Acyclic Sub-
graphs of G :

p
corrg
0 (z) =

1

|AG |
∑

G ′=(V ,E ′)∈AG

pG
′

0 (z).
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Inference with a Weighted Objective

Define a new ELBO for general graphs:

log pθ(x) = logEp
corrg
0 (z)[pθ(x |z)]

≥ 1

|AG |
∑

G ′∈AG

(
EqG

′
λ (z |x)[log pθ(x |z)]− KL(qG

′
λ (z |x)||pG ′

0 (z))
)

:=L(λ,θ)

where qG
′

λ is defined in the same way as for the priors:

qG
′

λ (z) =
n∏

i=1

qλ(zi |xi )
∏

(vi ,vj )∈E ′

qλ(zi , zj |xi , xj)
qλ(zi |xi )qλ(zj |xj)

.



Inference with a Weighted Objective

I The loss function is intractable due to the potentially exponential many subgraphs.

I Represent the average loss on acyclic subgraphs as a weighted average loss on
edges.
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I The weighted loss is tractable. The weights can be computed from the
pseudo-inverse of the Laplacian matrix of G .
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Empirical Results

Table: Link prediction test NCRR

Method Test NCRR

vae 0.0052± 0.0007
GraphSAGE 0.0115± 0.0025
cvae 0.0171± 0.0009

Table: Spectral clustering scores

Method NMI scores

vae 0.0031± 0.0059
GraphSAGE 0.0945± 0.0607
cvae 0.2748± 0.0462

Table: User matching test RR

Method Test RR

vae 0.3498± 0.0167
cvae 0.7129± 0.0096



Conclusion and Future Work

I CVAE accounts for correlations between data points that are known a priori. It
can adopt a correlated variational density function to achieve a better variational
approximation.

I Future work includes extending to correlated VAEs with higher-order correlations.
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Thanks!

Poster #219

Code available at https://github.com/datang1992/Correlated-VAEs.

https://github.com/datang1992/Correlated-VAEs

