Brian Trippe, Jonathan Huggins, Raj Agrawal, and Tamara Broderick

Brian Trippe, Jonathan Huggins, Raj Agrawal, and Tamara Broderick

Genomic Study (motivating example)

- Goal: Understand relationship between genomic variation & disease outcome
 N=20,000 samples — D=500,000 SNPs
- https://www.ebi.ac.uk/training/

Healthy

Diseased

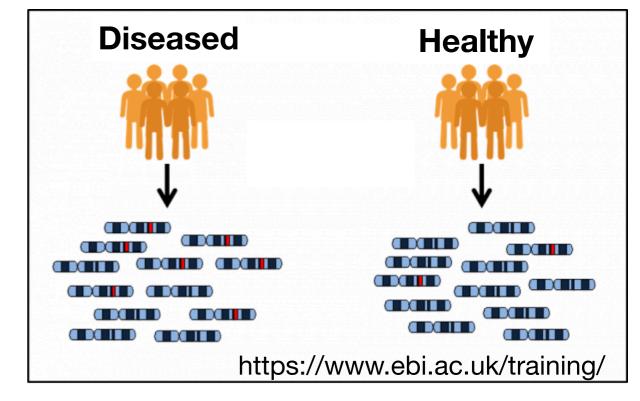
Brian Trippe, Jonathan Huggins, Raj Agrawal, and Tamara Broderick

Genomic Study (motivating example)

- Goal: Understand relationship between genomic variation & disease outcome
 N=20,000 complex
- N=20,000 samples D=500,000 SNPs

Generalized Linear Models (GLMs)

- Interpretability
- E.g. Logistic/Poisson/Negative Binomial Regression

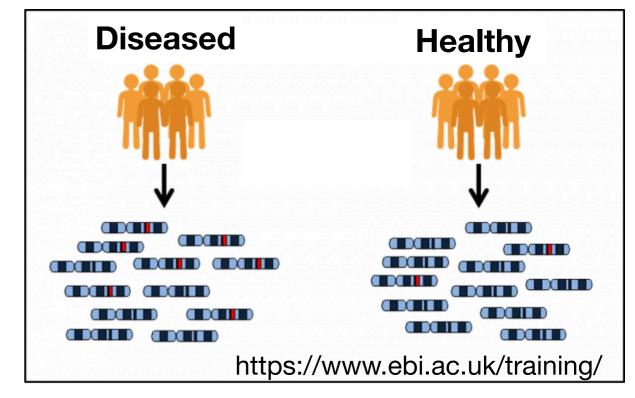


Brian Trippe, Jonathan Huggins, Raj Agrawal, and Tamara Broderick

Genomic Study (motivating example)

- **Goal:** Understand relationship between genomic variation & disease outcome
- N=20,000 samples D=500,000 SNPs

- Interpretability
- E.g. Logistic/Poisson/Negative
 Binomial Regression



Bayesian Modeling & Inference

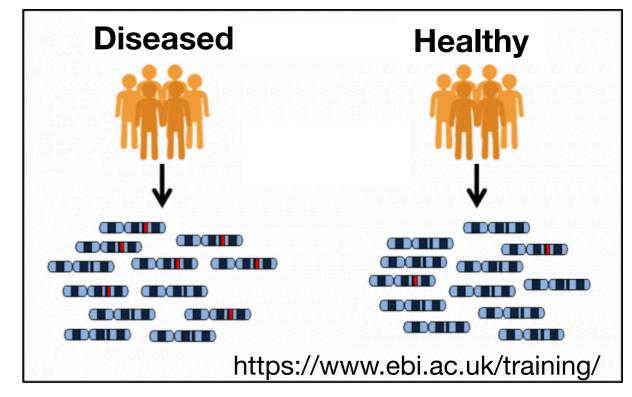
- Coherent uncertainty quantification

Brian Trippe, Jonathan Huggins, Raj Agrawal, and Tamara Broderick

Genomic Study (motivating example)

- Goal: Understand relationship between genomic variation & disease outcome
- N=20,000 samples D=500,000 SNPs

- Interpretability
- E.g. Logistic/Poisson/Negative Binomial Regression



Bayesian Modeling & Inference

- Coherent uncertainty quantification Problem: Super-linear scaling with D

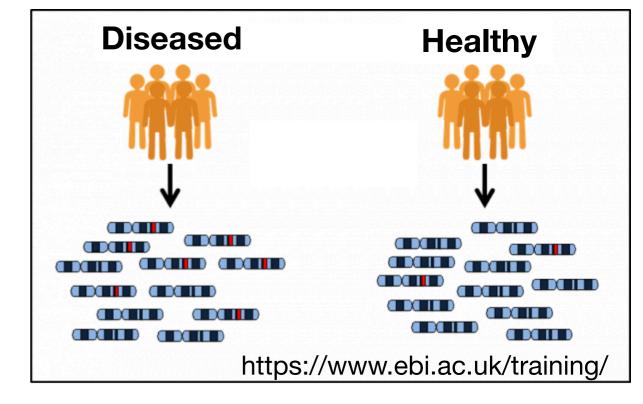
Brian Trippe, Jonathan Huggins, Raj Agrawal, and Tamara Broderick

Genomic Study (motivating example)

- Goal: Understand relationship between genomic variation & disease outcome
 N=20,000 complete
- N=20,000 samples D=500,000 SNPs

Generalized Linear Models (GLMs)

- Interpretability
- E.g. Logistic/Poisson/Negative Binomial Regression



Bayesian Modeling & Inference

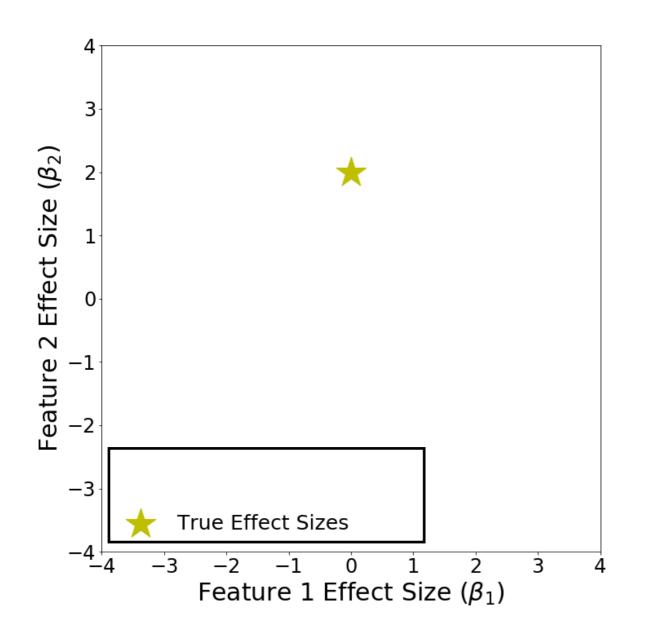
- Coherent uncertainty quantification **Problem: Super-linear scaling with D**

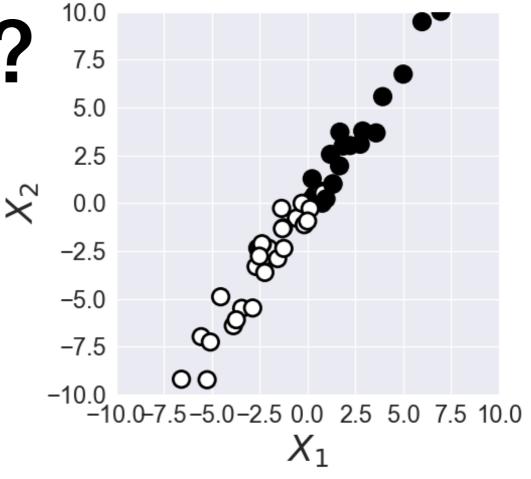
We present **LR-GLM**, a method with linear scaling in D and theoretical guarantees on quality

Cartoon Example

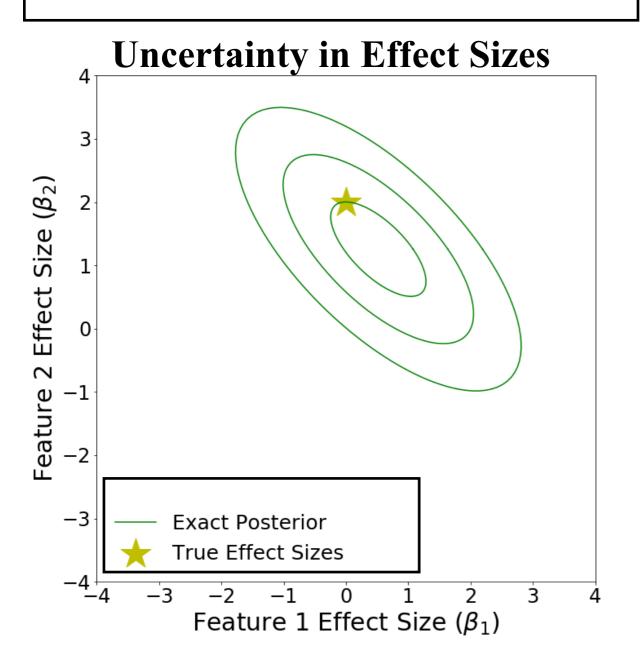


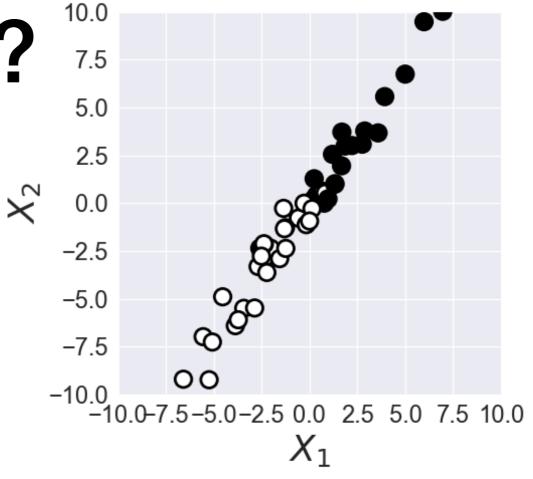
Cartoon Example



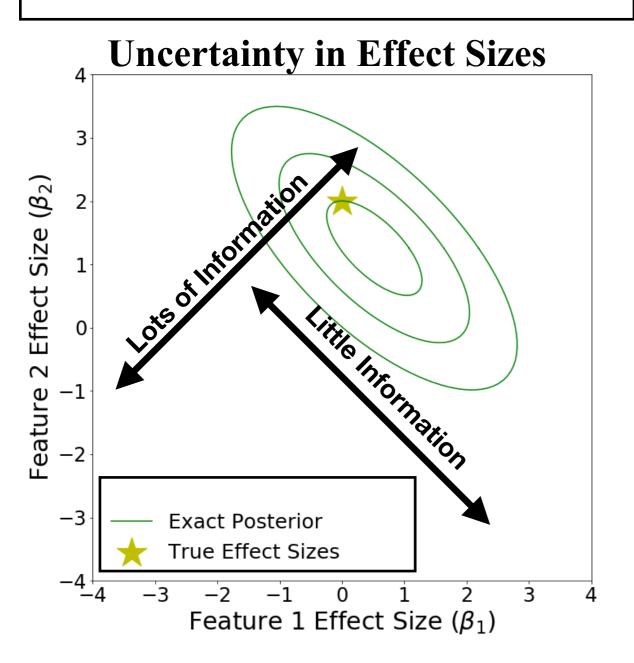


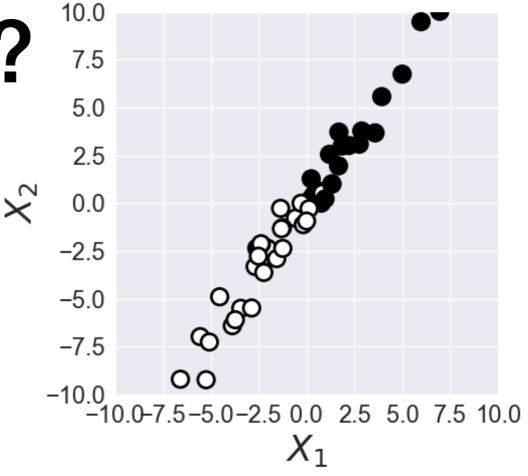
Cartoon Example



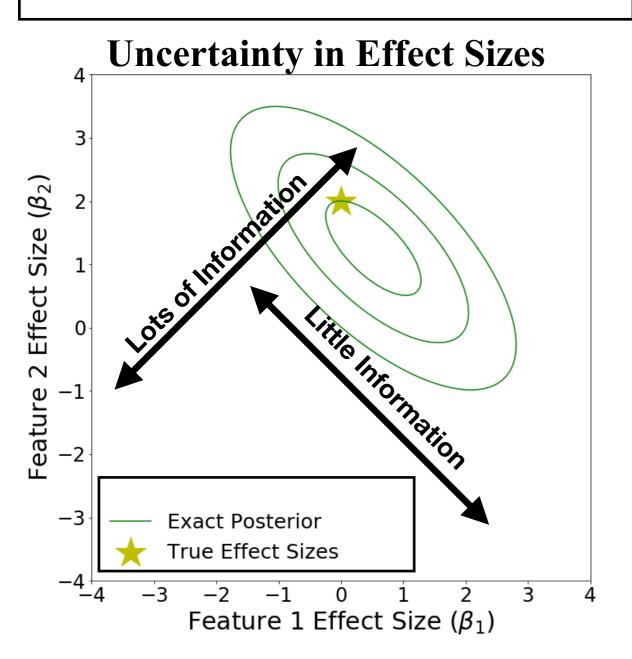


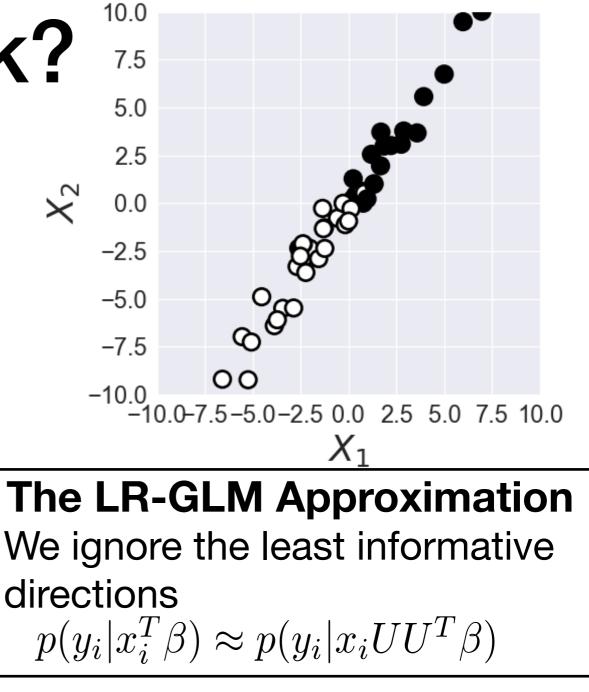
Cartoon Example



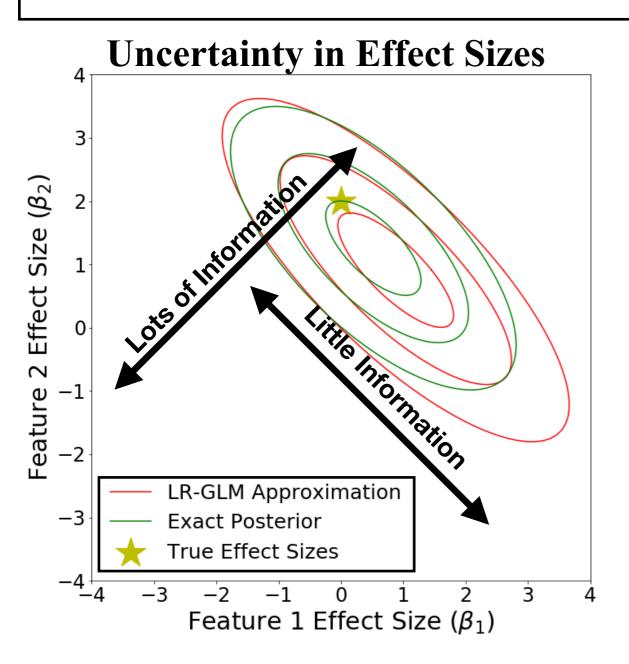


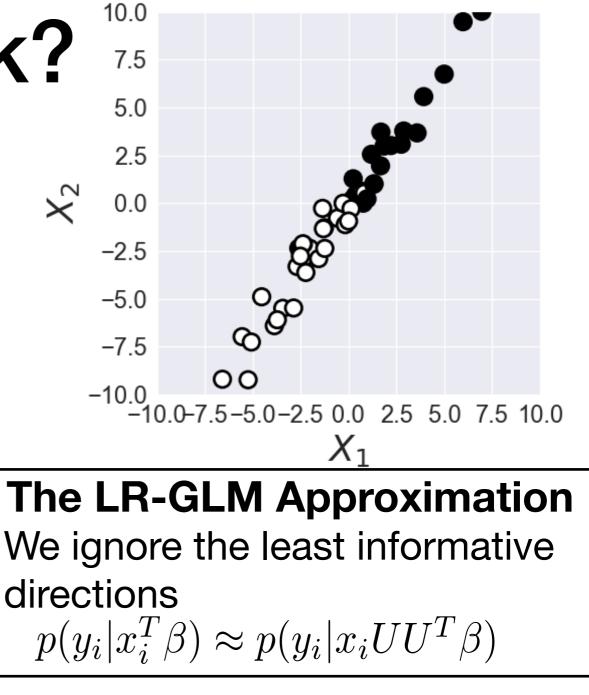
Cartoon Example





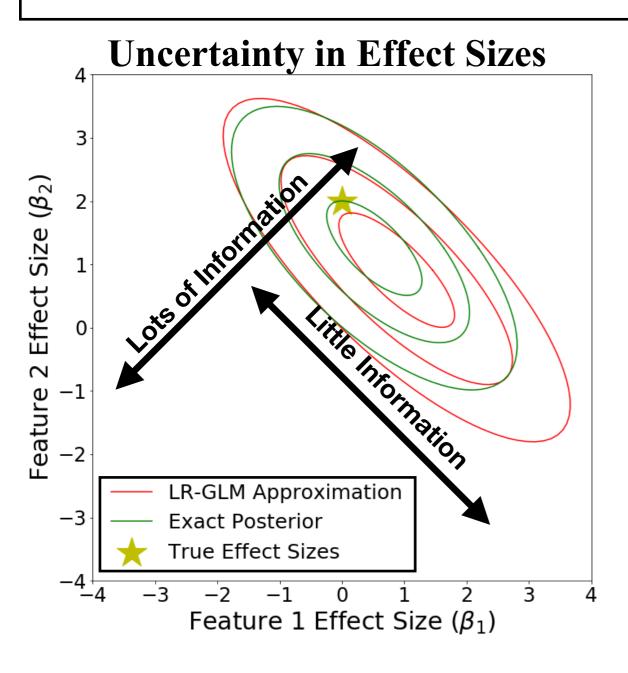
Cartoon Example

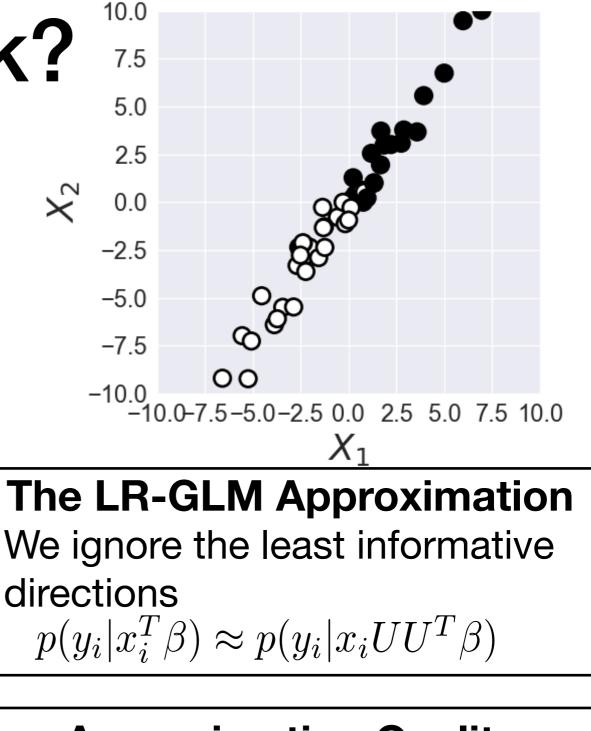




Cartoon Example

 Logistic Regression with two correlated features

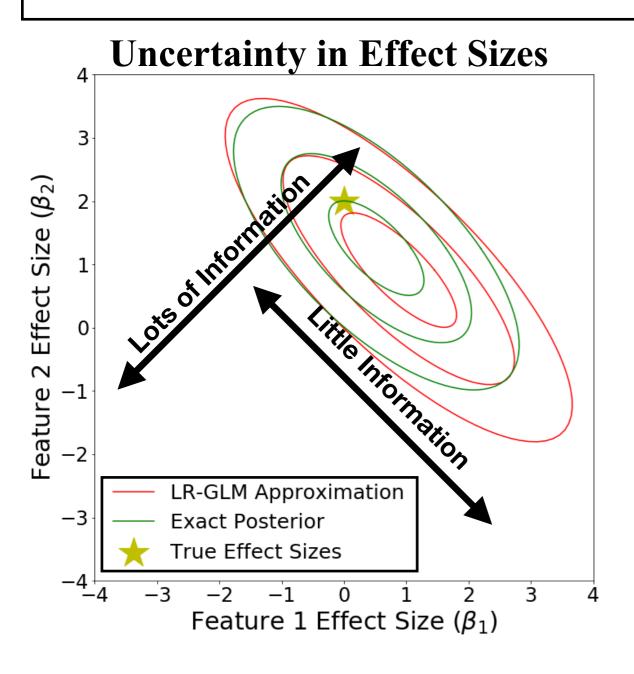


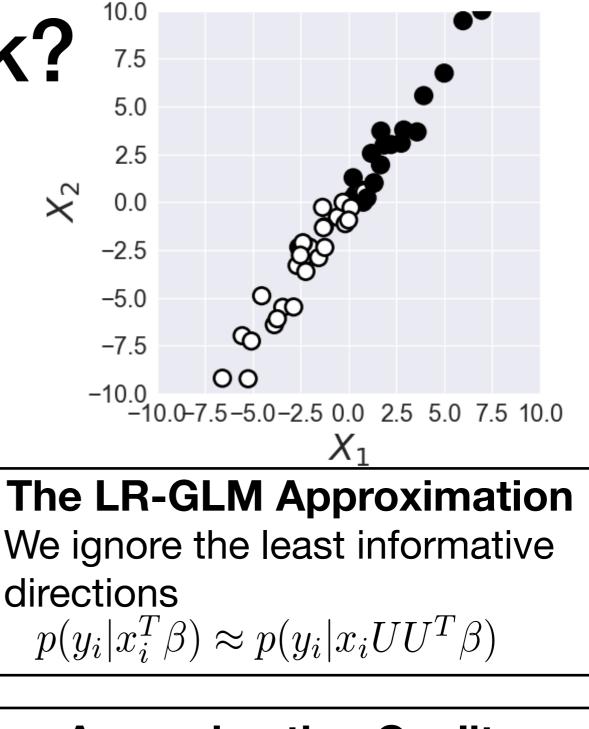


Approximation Quality Exact when data are low rank

Cartoon Example

 Logistic Regression with two correlated features



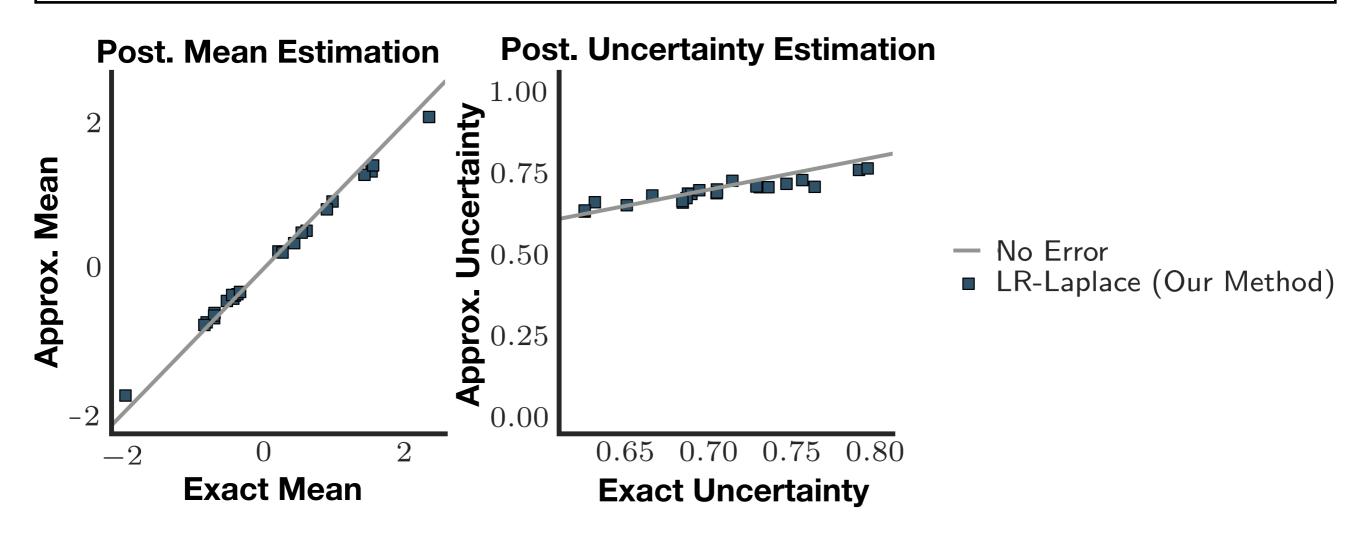


Approximation Quality

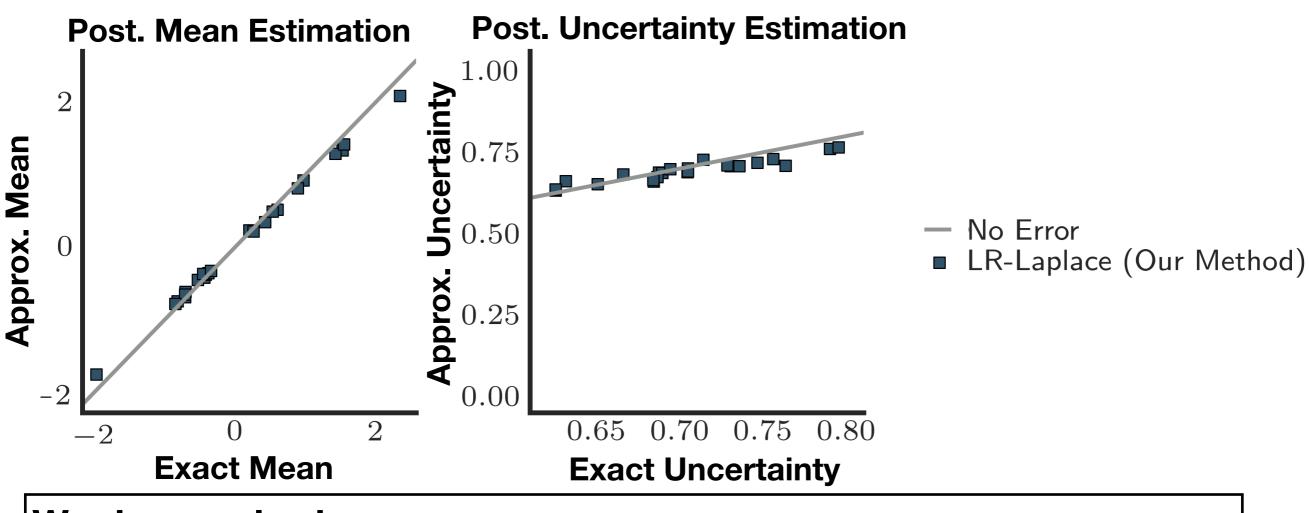
- Exact when data are low rank
- We prove: Approximation is close when the data are approximately low rank

Evaluate by comparing exact means and uncertainties (slow) against our approximation (fast)

Evaluate by comparing exact means and uncertainties (slow) against our approximation (fast)



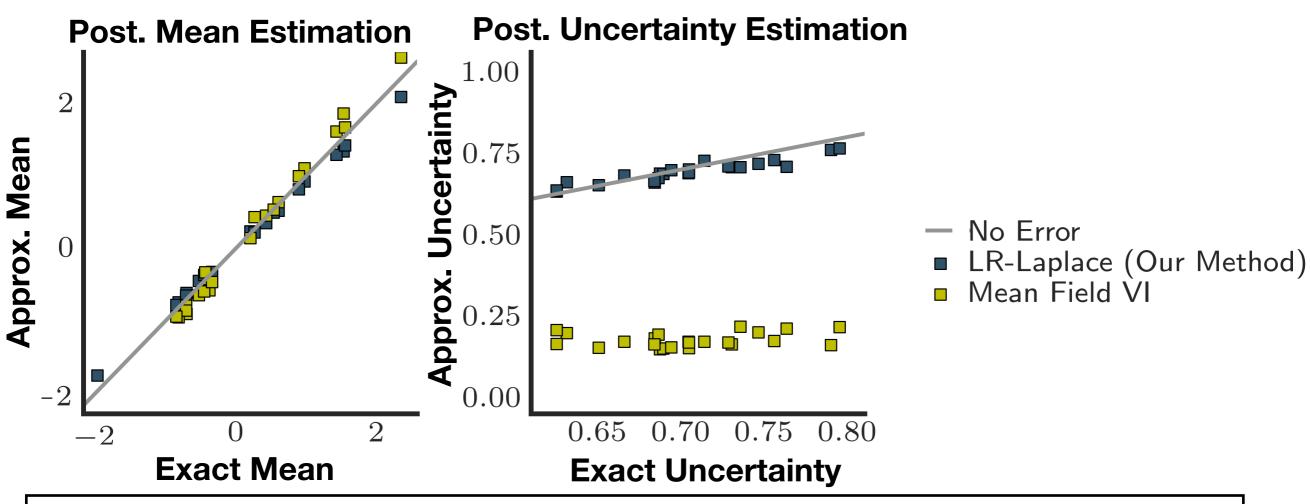
Evaluate by comparing exact means and uncertainties (slow) against our approximation (fast)



We rigorously show...

- Rank of approximation defines a computational-statistical trade-off

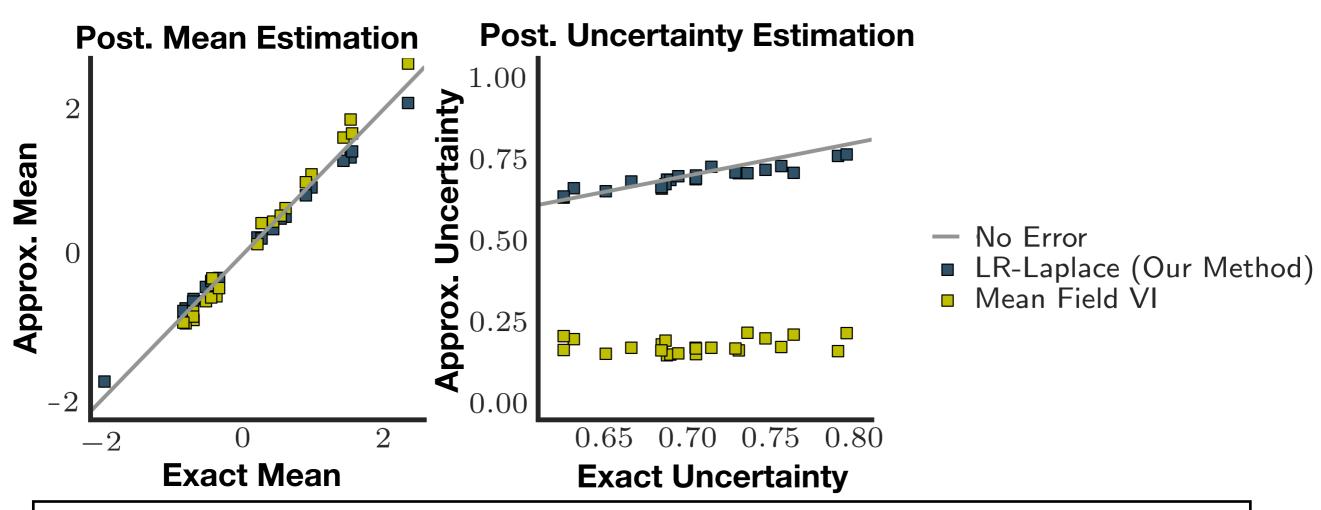
Evaluate by comparing exact means and uncertainties (slow) against our approximation (fast)



We rigorously show...

- Rank of approximation defines a computational-statistical trade-off

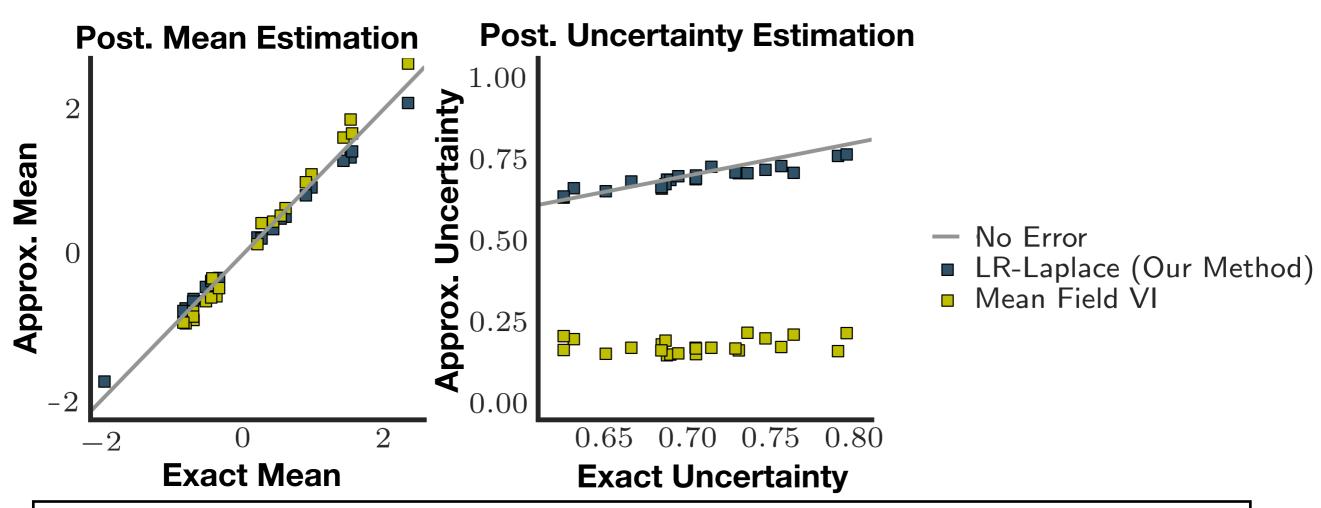
Evaluate by comparing exact means and uncertainties (slow) against our approximation (fast)



We rigorously show...

- Rank of approximation defines a computational-statistical trade-off
- The approximation is conservative (overestimates uncertainty)

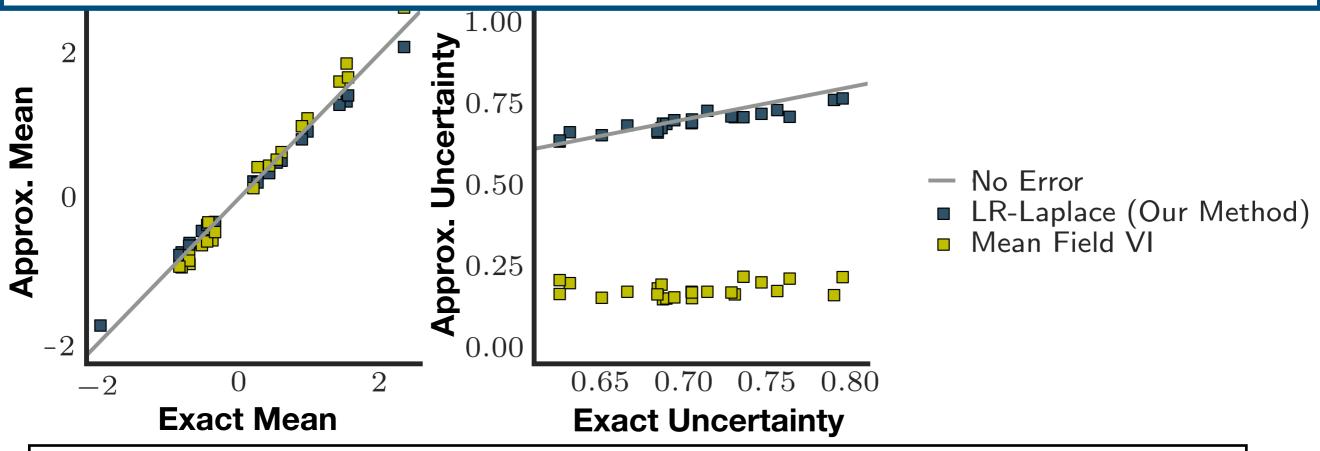
Evaluate by comparing exact means and uncertainties (slow) against our approximation (fast)



We rigorously show...

- Rank of approximation defines a computational-statistical trade-off
- The approximation is conservative (overestimates uncertainty)
- For high-dimensional, correlated data, LR-GLM closely approximates the exact posterior up to 5X faster!

Brian L. Trippe, Jonathan H. Huggins, Raj Agrawal and Tamara Broderick Paper: proceedings.mlr.press/v97/trippe19a Poster: Pacific Ballroom #214



We rigorously show...

- Rank of approximation defines a computational-statistical trade-off
- The approximation is conservative (overestimates uncertainty)
- For high-dimensional, correlated data, LR-GLM closely approximates the exact posterior up to 5X faster!