1.5em 0pt

Calibrated Approximate Bayesian Inference

Hanwen Xing ¹ Geoff K. Nicholls ¹ Jeong Eun Lee ²

¹Department of Statistics, University of Oxford, UK

²Department of Statistics, University of Auckland, New Zealand

June 5, 2019

- Approximation schemes are key to Bayesian inference.
- Does a α level approximate credible set have the right coverage?
- Let C_y and \tilde{C}_y be the exact and approximate α level credible set,

$$\alpha = \mathcal{E}_{\pi}(\mathbb{1}_{\phi \in C_{y}}) = \int_{\Omega} \mathbb{1}_{\phi \in C_{y}} \pi(\phi|y) d\phi.$$

$$\alpha = E_{\tilde{\pi}}(\mathbb{1}_{\theta \in \tilde{C}_{y}}) = \int_{\Omega} \mathbb{1}_{\theta \in \tilde{C}_{y}} \tilde{\pi}(\theta|y) d\theta.$$

• We also define

$$b(y) = \Pr(\phi \in \tilde{C}_Y | Y = y) = \int_{\Omega} \mathbb{1}_{\phi \in \tilde{C}_y} \pi(\phi | y) d\phi$$

be the operational coverage \tilde{C}_Y achieves.

• We want to estimate $b(y_{obs})$, the true Bayesian coverage of the approximate credible set, as it measures the reliability of approximation at the observed data.

Regression approach Let {φ_i, y_i}^M_{i=1} be samples from the generative model π(φ)p(y|φ), let C̃_{y_i} be an approximate credible set for y_i, and c_i = 1<sub>φ_i∈ C̃_{y_i}. Conditional on y_i,
</sub>

 $c_i \sim Bernoulli(b(y_i)), \quad b(y_i) = \Pr(\phi_i \in \tilde{C}_{Y_i} | Y_i = y_i)$

• Weighted-sample approach Estimate b(y) by first approximately sampling from the exact posterior using Annealed Importance Sampling algorithm. This leverages our ability to draw samples from the approximate posterior $\tilde{\pi}(\phi|y_{obs})$ as a good starting point for the AIS iteration.

Example

Figure: Icefloe image

We approximate the free boundary condition likelihood by a toroidal boundary condition likelihood.

Example

Number of repitition 1.0 15 10 0.9 Estimated coverage at observed data 0.8 Estimated coverage 0.6 j. + 0.4 + 0.5 + 40000 ò 20 40 60 ò 10000 20000 30000 Sufficient Statistic S(y) Number of iteration

Figure: Left: AIS Right:Regression