# AdaGrad Stepsizes: Sharp Convergence Over Nonconvex Landscapes

Xiaoxia(Shirley) WU\*

PhD Candidate, The University of Texas at Austin

June 11th, 2019

<sup>\*</sup> joint work with Rachel Ward and Léon Bottou, at Facebook AI Research.

## Outline

#### Motivations

#### Theoretical Contributions

We provide a novel convergence result for AdaGrad-Norm to emphasize its robustness to the hyper-parameter tuning over nonconvex landscapes.

Practical Implications

# Outline

#### Motivations

#### **Theoretical Contributions**

We provide a novel convergence result for AdaGrad-Norm to emphasize its robustness to the hyper-parameter tuning over nonconvex landscapes.

**Practical Implications** 

#### Problem Setup

Given a differentiable **non-convex** function,  $F : \mathbb{R}^d \to \mathbb{R}$ ,

► 
$$\|\nabla F(x) - \nabla F(y)\| \le L \|x - y\|, \quad \forall x, y \in \mathbb{R}^d$$

#### Problem Setup

Given a differentiable **non-convex** function,  $F : \mathbb{R}^d \to \mathbb{R}$ ,

$$||\nabla F(x) - \nabla F(y)|| \le L ||x - y||, \quad \forall x, y \in \mathbb{R}^d$$

Our desired goal 
$$\Rightarrow \min_{x \in \mathbb{R}^d} F(x)$$
  
We can achieve  $\Rightarrow \|\nabla F(x)\|^2 \le \varepsilon$ 

#### Problem Setup

Given a differentiable **non-convex** function,  $F : \mathbb{R}^d \to \mathbb{R}$ ,

Our desired goal 
$$\Rightarrow \min_{x \in \mathbb{R}^d} F(x)$$
  
We can achieve  $\Rightarrow \|\nabla F(x)\|^2 \le \varepsilon$ 

#### Algorithm

Stochastic Gradient Descent (SGD) at the *j*th iteration

$$x_{j+1} \leftarrow x_j - \eta_j G(x_j),$$
 (1)

where  $\mathbb{E}[G(x_j)] = \nabla F(x_j)$  and  $\eta_j > 0$  is the **stepsize**.

#### Algorithm: SGD

Set a sequence  $\{\eta_j\}_{j\geq 0}$  for

$$x_{j+1} \leftarrow x_j - \eta_j G(x_j)$$

**Q**: How to set the sequence  $\{\eta_j\}_{j\geq 0}$  ?

$${}^{1}\mathbb{E}[\|G(x) - \nabla F(x)\|^{2}] \leq \sigma^{2}$$

#### Algorithm: SGD

Set a sequence  $\{\eta_j\}_{j\geq 0}$  for

$$x_{j+1} \leftarrow x_j - \eta_j G(x_j)$$

 $\mathbf{Q}$ : How to set the sequence  $\{\eta_j\}_{j\geq 0}$  ?

#### Difficulty in Choosing Stepsizes

The classical Robbins/Monro theory (Robbins and Monro, 1951) if

$$\sum_{j=1}^{\infty} \eta_j = \infty \quad \text{and} \quad \sum_{j=1}^{\infty} \eta_j^2 < \infty; \tag{2}$$

and the variance of the gradient is bounded <sup>1</sup>, then

$$\lim_{j\to\infty}\mathbb{E}[\|\nabla F(x_j)\|^2]=0.$$

 ${}^{1}\mathbb{E}[\|G(x) - \nabla F(x)\|^{2}] \leq \sigma^{2}$ 

#### Algorithm: SGD

Set a sequence  $\{\eta_j\}_{j\geq 0}$  for

$$x_{j+1} \leftarrow x_j - \eta_j G(x_j)$$

 $\mathbf{Q}$ : How to set the sequence  $\{\eta_j\}_{j\geq 0}$  ?

#### Difficulty in Choosing Stepsizes

The classical Robbins/Monro theory (Robbins and Monro, 1951) if

$$\sum_{j=1}^{\infty}\eta_j=\infty$$
 and  $\sum_{j=1}^{\infty}\eta_j^2<\infty;$  (3)

and the variance of the gradient is bounded, then  $\lim_{j\to\infty}\mathbb{E}[\|\nabla F(x_j)\|^2]=0.$ 

However, the rule is too general for practical applications.

Algorithm: SGD Set a sequence  $\{\eta_j\}_{j\geq 0}$  for

$$x_{j+1} \leftarrow x_j - \eta_j G(x_j)$$

#### Possible Choice: Manual Tuning

$$\eta_j = \begin{cases} \eta & j \leq T_1 \\ \alpha_1 \eta & T_1 \leq j \leq T_2 \\ \alpha_2 \eta & T_2 \leq j \leq T_3 \\ \cdots \end{cases}$$

 $||\nabla F(x) - \nabla F(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^d$ 

Algorithm: SGD Set a sequence  $\{\eta_j\}_{j\geq 0}$  for

$$x_{j+1} \leftarrow x_j - \eta_j G(x_j)$$

#### Possible Choice: Manual Tuning

$$\eta_j = \begin{cases} \eta & j \leq T_1 \\ \alpha_1 \eta & T_1 \leq j \leq T_2 \\ \alpha_2 \eta & T_2 \leq j \leq T_3 \\ \cdots \end{cases}$$

However, tuning  $\eta$ ,  $\alpha_1$ ,  $\alpha_2$ ,  $T_1$ ,  $T_2$ , ... are computationally costly. In particular, it requires  $\eta \leq 2/L$ .<sup>2</sup>

 $\|\nabla F(x) - \nabla F(y)\| \le L \|x - y\|, \quad \forall x, y \in \mathbb{R}^d$ 

Algorithm: SGD with Adaptive Stepsize Set a sequence  $\{b_j\}_{j\geq 0}$  for  $\ell = 1, 2, \cdots, d$ 

$$[x_{j+1}]_{\ell} \leftarrow [x_j]_{\ell} - \frac{\eta}{[b_{j+1}]_{\ell}} [G(x_j)]_{\ell}$$

Possible Choice: Adaptive Gradient Methods Among many variants, one is AdaGrad  $([b_{j+1}]_{\ell})^2 = ([b_j]_{\ell})^2 + ([G(x_j)]_{\ell})^2$ 

Algorithm: SGD with Adaptive Stepsize Set a sequence  $\{b_j\}_{j\geq 0}$  for  $\ell = 1, 2, \cdots, d$ 

$$[x_{j+1}]_{\ell} \leftarrow [x_j]_{\ell} - \frac{\eta}{[b_{j+1}]_{\ell}} [G(x_j)]_{\ell}$$

Possible Choice: Adaptive Gradient Methods Among many variants, one is AdaGrad  $([b_{i+1}]_{\ell})^2 = ([b_i]_{\ell})^2 + ([G(x_i)]_{\ell})^2$ 

 It helps with "increasing the stepsize for more sparse parameters and decreasing the stepsize for less sparse ones." (Duchi et al. 2011)

Algorithm: SGD with Adaptive Stepsize Set a sequence  $\{b_j\}_{j\geq 0}$  for  $\ell = 1, 2, \cdots, d$ 

$$[x_{j+1}]_{\ell} \leftarrow [x_j]_{\ell} - \frac{\eta}{[b_{j+1}]_{\ell}} [G(x_j)]_{\ell}$$

Possible Choice: Adaptive Gradient Methods Among many variants, one is *AdaGrad* 

 $([b_{j+1}]_{\ell})^2 = ([b_j]_{\ell})^2 + ([G(x_j)]_{\ell})^2$ 

- It helps with "increasing the stepsize for more sparse parameters and decreasing the stepsize for less sparse ones." (Duchi et al. 2011)
- However, "co-ordinate" AdaGrad changes the optimization problem by introducing the "bias" in the solutions, leading to worse generalization (Wilson et al. 2017)

Algorithm: SGD with Adaptive Stepsize Set a sequence  $\{b_j\}_{j\geq 0}$  for  $\ell = 1, 2, \cdots, d$ 

$$[x_{j+1}]_{\ell} \leftarrow [x_j]_{\ell} - \frac{\eta}{b_{j+1}}[G(x_j)]_{\ell}$$

Possible Variant: Norm Version of AdaGrad (AdaGrad-Norm)  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

Algorithm: SGD with Adaptive Stepsize Set a sequence  $\{b_j\}_{j\geq 0}$  for  $\ell = 1, 2, \cdots, d$ 

$$[x_{j+1}]_{\ell} \leftarrow [x_j]_{\ell} - \frac{\eta}{b_{j+1}}[G(x_j)]_{\ell}$$

Possible Variant: Norm Version of AdaGrad

(AdaGrad-Norm) 
$$b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$$

- Auto-tuning property (Wu, Ward, and Bottou, 2018): robustness to the choices of hyper-parameters (b<sub>0</sub> and η); connection to Weight/Layer/Batch Normalization;
- Does not affect generalization.

## Outline

#### Motivations

#### Theoretical Contributions

We provide a novel convergence result for AdaGrad-Norm to emphasize its robustness to the hyper-parameter tuning over nonconvex landscapes.

Practical Implications



#### Algorithm: SGD with Adaptive Stepsize

$$x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$$
 with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

What is the convergence rate of AdaGrad-Norm?

▶ Intuition: if  $\mathbb{E}[||G(x_j)||^2] \leq \gamma^2$ , then the effective stepsize  $\frac{\eta}{b_i}$ 

$$\mathbb{E}\left[\frac{\eta}{b_j}\right] \geq \frac{\eta}{\sqrt{j\gamma^2 + b_0^2}}$$



#### Algorithm: SGD with Adaptive Stepsize

$$x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$$
 with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

What is the convergence rate of AdaGrad-Norm?

▶ Intuition: if  $\mathbb{E}[\|G(x_j)\|^2] \leq \gamma^2$ , then the effective stepsize  $\frac{\eta}{b_i}$ 

$$\mathbb{E}\left[\frac{\eta}{b_j}\right] \geq \frac{\eta}{\sqrt{j\gamma^2 + b_0^2}}$$

• Convex Landscapes 
$$\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$
 (Levy, 2018)



#### Algorithm: SGD with Adaptive Stepsize

$$x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$$
 with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

What is the convergence rate of AdaGrad-Norm?

▶ Intuition: if  $\mathbb{E}[\|G(x_j)\|^2] \leq \gamma^2$ , then the **effective stepsize**  $\frac{\eta}{b_i}$ 

$$\mathbb{E}\left[\frac{\eta}{b_j}\right] \geq \frac{\eta}{\sqrt{j\gamma^2 + b_0^2}}$$

• Convex Landscapes  $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$  (Levy, 2018)

► Nonconvex Landscapes  $\mathcal{O}\left(\frac{\log(T)}{\sqrt{T}}\right)$  (Ours, Theorem 2.1)

### Algorithm: SGD with Adaptive Stepsize

(1) At *j*th iteration, generate  $\xi_j$  and  $G(x_j) = G(x_j, \xi_j)$ (2)  $x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$  with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

#### Theorem

Under the assumption:

- 1. The random vectors  $\xi_j$ , j = 0, 1, 2, ..., are mutually independent and also independent of  $x_j$ ;
- 2. Bounded variance<sup>3</sup>:  $\mathbb{E}_{\xi_j}[\|G(x_j,\xi_j) \nabla F(x_j)\|^2] \leq \sigma^2;$
- 3. Bounded gradient norm:  $\|\nabla F(x_j)\| \leq \gamma$  uniformly;

<sup>&</sup>lt;sup>3</sup>It means the expectation with respect to  $\xi_j$  conditional on  $x_j$ .

### Algorithm: SGD with Adaptive Stepsize

(1) At *j*th iteration, generate  $\xi_j$  and  $G(x_j) = G(x_j, \xi_j)$ (2)  $x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$  with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

#### Theorem

Under the assumption:

- 1. The random vectors  $\xi_j$ , j = 0, 1, 2, ..., are mutually independent and also independent of  $x_j$ ;
- 2. Bounded variance<sup>3</sup>:  $\mathbb{E}_{\xi_j}[\|G(x_j,\xi_j) \nabla F(x_j)\|^2] \leq \sigma^2;$
- 3. Bounded gradient norm:  $\|\nabla F(x_j)\| \leq \gamma$  uniformly;

AdaGrad-Norm converges to a stationary point w.h.p. at the rate

$$\min_{\ell=0,1,\dots,T-1} \|\nabla F(x_\ell)\|^2 \leq \frac{C^2}{T} + \frac{\sigma C}{\sqrt{T}}$$

where  $C = \widetilde{O}(\log(T/b_0 + 1))$  and  $\widetilde{O}$  hides  $\eta$ , L and  $F(x_0) - F^*$ . <sup>3</sup>It means the expectation with respect to  $\xi_i$  conditional on  $x_i$ .

### Algorithm: SGD with Adaptive Stepsize

(1) At *j*th iteration, generate  $\xi_j$  and  $G(x_j) = G(x_j, \xi_j)$ (2)  $x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$  with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

## Challenges in the proof:

 $b_{j+1}$  is a random variable correlated with  $\nabla F(x_j)$  and  $G(x_j)$ 

L-Lipschitz continuous gradient <sup>4</sup>

$$\frac{F_{j+1}-F_j}{\eta} \leq -\frac{\|\nabla F_j\|^2}{b_{j+1}} + \underbrace{\frac{\langle \nabla F_j, \nabla F_j - G_j \rangle}{b_{j+1}}}_{KeyTerm} + \frac{\eta L \|G_j\|^2}{2b_{j+1}^2}$$

<sup>4</sup>We write  $F(x_j) = F_j$ ,  $\nabla F(x_j) = \nabla F_j$  and  $G(x_j) = G_j$ .

### Algorithm: SGD with Adaptive Stepsize

(1) At *j*th iteration, generate  $\xi_j$  and  $G(x_j) = G(x_j, \xi_j)$ (2)  $x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$  with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

# Challenges in the proof:

 $b_{j+1}$  is a random variable correlated with  $\nabla F(x_j)$  and  $G(x_j)$ 

L-Lipschitz continuous gradient <sup>4</sup>

$$\frac{F_{j+1}-F_j}{\eta} \leq -\frac{\|\nabla F_j\|^2}{b_{j+1}} + \underbrace{\frac{\langle \nabla F_j, \nabla F_j - G_j \rangle}{b_{j+1}}}_{Key Term} + \frac{\eta L \|G_j\|^2}{2b_{j+1}^2}$$

Unlike the standard SGD with constant stepsize

$$\mathbb{E}_{\xi_j}\left[\frac{\langle \nabla F_j, \nabla F_j - G_j \rangle}{b_{j+1}}\right] \neq 0;$$

<sup>4</sup>We write 
$$F(x_j) = F_j$$
,  $\nabla F(x_j) = \nabla F_j$  and  $G(x_j) = G_j$ .

## Algorithm: SGD with Adaptive Stepsize

(1) At *j*th iteration, generate  $\xi_j$  and  $G(x_j) = G(x_j, \xi_j)$ (2)  $x_{j+1} \leftarrow x_j - \frac{\eta}{b_{j+1}} G(x_j)$  with  $b_{j+1}^2 = b_j^2 + \|G(x_j)\|^2$ 

# Challenges in the proof:

 $b_{j+1}$  is a random variable correlated with  $\nabla F(x_j)$  and  $G(x_j)$ 

L-Lipschitz continuous gradient <sup>4</sup>

$$\frac{F_{j+1}-F_j}{\eta} \le -\frac{\|\nabla F_j\|^2}{b_{j+1}} + \underbrace{\frac{\langle \nabla F_j, \nabla F_j - G_j \rangle}{b_{j+1}}}_{Key Term} + \frac{\eta L \|G_j\|^2}{2b_{j+1}^2}$$

Unlike the standard SGD with constant stepsize

$$\mathbb{E}_{\xi_j}\left[\frac{\langle \nabla F_j, \nabla F_j - G_j \rangle}{b_{j+1}}\right] \neq 0;$$

New techniques needed to bound KeyTerm: careful Tower rule, Cauchy-Schwarz, Hölder's Inequality, etc.

<sup>4</sup>We write  $F(x_j) = F_j$ ,  $\nabla F(x_j) = \nabla F_j$  and  $G(x_j) = G_j$ .

# Outline

#### Motivations

#### Theoretical Contributions

We provide a novel convergence result for AdaGrad-Norm to emphasize its robustness to the hyper-parameter tuning over nonconvex landscapes.

#### Practical Implications

#### Practice

#### AdaGrad-Norm

We show that AdaGrad-Norm converges <sup>5</sup>

$$\min_{\ell=0,1,\ldots,T-1} \|\nabla F(x_{\ell})\|^2 \leq \mathcal{O}\left(\frac{C_1}{T} + \frac{\sigma C_2}{\sqrt{T}}\right)$$

where the constants  $C_1$  and  $C_2$  are explicit and robust to hyper-parameters  $b_0$  and  $\eta$ .

Recall:  $\mathbb{E}_{\xi_j}[\|G(x_j,\xi_j) - \nabla F(x_j)\|^2] \leq \sigma^2$ 

<sup>5</sup>Note we combine Theorem 2.1 and Theorem 2.2  $^6$ For the case  $b_1 \geq \eta L \approx \Delta L$ 

#### Practice

#### AdaGrad-Norm

We show that AdaGrad-Norm converges <sup>5</sup>

$$\min_{\ell=0,1,\ldots,T-1} \|\nabla F(x_{\ell})\|^2 \leq \mathcal{O}\left(\frac{C_1}{T} + \frac{\sigma C_2}{\sqrt{T}}\right)$$

where the constants  $C_1$  and  $C_2$  are explicit and robust to hyper-parameters  $b_0$  and  $\eta$ .

Recall: 
$$\mathbb{E}_{\xi_j}[\|G(x_j,\xi_j) - \nabla F(x_j)\|^2] \le \sigma^2$$

• For  $\sigma \approx 0$ 

Suppose we know  $F^*$  and set  $\eta = F(x_0) - F^*$ ; the constant  $C_1$  almost matches GD with best stepsize.<sup>6</sup>

<sup>5</sup>Note we combine Theorem 2.1 and Theorem 2.2 <sup>6</sup>For the case  $b_1 \ge \eta L \approx \Delta L$ 

### Practice

#### AdaGrad-Norm

We show that AdaGrad-Norm converges <sup>5</sup>

$$\min_{\ell=0,1,\ldots,T-1} \|\nabla F(x_{\ell})\|^2 \leq \mathcal{O}\left(\frac{C_1}{T} + \frac{\sigma C_2}{\sqrt{T}}\right)$$

where the constants  $C_1$  and  $C_2$  are explicit and robust to hyper-parameters  $b_0$  and  $\eta$ .

Recall: 
$$\mathbb{E}_{\xi_j}[\|G(x_j,\xi_j) - \nabla F(x_j)\|^2] \le \sigma^2$$

• For  $\sigma \approx 0$ 

Suppose we know  $F^*$  and set  $\eta = F(x_0) - F^*$ ; the constant  $C_1$  almost matches GD with best stepsize.<sup>6</sup>

For σ > 0

Set  $\eta = 1$ , the constant  $C_2$  almost matches SGD with well-tuned stepsize up to a factor of  $L \log(T/b_0 + 1)$ 

<sup>5</sup>Note we combine Theorem 2.1 and Theorem 2.2 <sup>6</sup>For the case  $b_1 \ge \eta L \approx \Delta L$ 

### Practice: Synthetic Data with Linear Regression



Figure 1: Random initialized  $x_0$  with  $\eta = F(x_0) - F^* = 650 - 0$ . (AdaGrad-Norm)  $\frac{650}{b_j}$ ; (SGD-Constant)  $\frac{650}{b_0}$ ; (SGD-DecaySqrt)  $\frac{650}{b_0\sqrt{j}}$ 

## Practice: ResNet-18 on CIFAR10



Figure 2: Random initialized  $x_0$  with  $\eta = 1$ . (AdaGrad-Norm)  $\frac{1}{b_j}$ ; (SGD-Constant)  $\frac{1}{b_0}$ ; (SGD-DecaySqrt)  $\frac{1}{b_0\sqrt{j}}$ 

AdaGrad-Norm code: https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py

#### Practice: ResNet-50 on ImageNet



Figure 3: Random initialized  $x_0$  with  $\eta = 1$ . (AdaGrad-Norm)  $\frac{1}{b_j}$ ; (SGD-Constant)  $\frac{1}{b_0}$ ; (SGD-DecaySqrt)  $\frac{1}{b_0\sqrt{j}}$ 

#### Conclusion

 We provide a novel convergence result for AdaGrad-Norm in non-convex optimization. The analysis is useful to adaptive-type methods.

#### Conclusion

- We provide a novel convergence result for AdaGrad-Norm in non-convex optimization. The analysis is useful to adaptive-type methods.
- The convergence bound for AdaGrad-Norm is explicit and comparable with well-tuned stepsize choice in SGD, but without careful tuning of the AdaGrad-Norm's hyper-parameters

#### Conclusion

- We provide a novel convergence result for AdaGrad-Norm in non-convex optimization. The analysis is useful to adaptive-type methods.
- The convergence bound for AdaGrad-Norm is explicit and comparable with well-tuned stepsize choice in SGD, but without careful tuning of the AdaGrad-Norm's hyper-parameters
- Numerical experiments suggest that the robustness of AdaGrad-Norm extends to state-of-the-art models in deep learning, without sacrificing generalization

See you

at poster section: Pacific Ballroom #56 (Today 6:30-9:00PM).

### Practice: ResNet-50 on ImageNet



Figure 4: Random initialized  $x_0$  with  $\eta = 1$ . (AdaGrad-Norm)  $\frac{1}{b_j}$ ; (SGD-Constant)  $\frac{1}{b_0}$ ; (SGD-DecaySqrt)  $\frac{1}{b_0\sqrt{j}}$ 

**Difficulty** Proofs of SGD do not straightforwardly extend because  $b_{k+1}$  is a random variable correlated with  $\nabla F(x_k)$ , i.e.,

$$\mathbb{E}_{\xi_j}\left[\frac{\langle \nabla F_j, \nabla F_j - G_j \rangle}{b_{j+1}}\right] \neq \frac{\mathbb{E}_{\xi_j}\left[\langle \nabla F_j, \nabla F_j - G_j \rangle\right]}{b_{j+1}} = \frac{1}{b_{j+1}} \cdot 0;$$

(Cauchy-Schwartz)

$$\mathbb{E}_{\xi_j}\left[\left(\frac{1}{\sqrt{b_j^2+C^2}}-\frac{1}{b_{j+1}}\right)\langle \nabla F_j,G_j\rangle\right] \leq \mathbb{E}_{\xi_j}\left[\left|\frac{1}{\sqrt{b_j^2+C^2}}-\frac{1}{b_{j+1}}\right|\|\nabla F_j\|\|G_j\|\right]$$

(Hölder's Inequality)

$$\mathbb{E}\left[\frac{\|\nabla F_k\|^2}{\sqrt{b_{k+1}^2}}\right] \geq \frac{\left(\mathbb{E}\|\nabla F_k\|^{\frac{4}{3}}\right)^{\frac{3}{2}}}{2\sqrt{\mathbb{E}\left[b_{k+1}^2\right]}}$$