A Quantitative Analysis of the Effect of Batch Normalization on Gradient Descent

Yongqiang Cai¹, Qianxiao Li^{1,2}, Zuowei Shen¹ 9-15 June 2019 (ICML), Long Beach, CA, USA

¹Department of Mathematics, National University of Singapore, Singapore

²Institute of High Performance Computing, A*STAR, Singapore

A vanilla fully-connected layer

 $z = \sigma(Wu + b).$

With batch normalization (loffe & Szegedy 2015):

$$z = \sigma(\gamma \mathsf{N}(Wu) + \beta), \qquad \mathsf{N}(\xi) := \frac{\xi - \mathbb{E}[\xi]}{\sqrt{\mathsf{Var}[\xi]}}.$$

Batch normalization works well in practice, e.g. allows stable training with large learning rates, works well in high dimensions or ill-conditioned problems Related work on BN [Ma & Klabjan (2017); Kohler et al. (2018); Arora et al. (2019)] A vanilla fully-connected layer

 $z = \sigma(Wu + b).$

With batch normalization (loffe & Szegedy 2015):

$$z = \sigma(\gamma \mathsf{N}(Wu) + \beta), \qquad \mathsf{N}(\xi) := \frac{\xi - \mathbb{E}[\xi]}{\sqrt{\mathsf{Var}[\xi]}}.$$

Batch normalization works well in practice, e.g. allows stable training with large learning rates, works well in high dimensions or ill-conditioned problems Related work on BN [Ma & Klabjan (2017); Kohler et al. (2018); Arora et al. (2019)]

Question: Can we quantify the precise effect of BN on gradient descent (GD)?

Linear regression model:

Input: $x \in \mathbb{R}^d$ Label: $y \in \mathbb{R}$ Model: $y = x^T w^* + \text{noise}$

Batch Normalization on Ordinary Least Squares

Linear regression model:

Input: $x \in \mathbb{R}^d$ Label: $y \in \mathbb{R}$ Model: $y = x^T w^* + \text{noise}$ OLS regression without BN

 $\begin{array}{ll} \text{Optimization problem:} & \min_w J_0(w) := \mathbb{E}_{x,y}[\frac{1}{2}(y-x^Tw)^2] \\ \text{Gradient descent dynamics:} & w_{k+1} = w_k - \varepsilon \nabla_w J_0(w_k) = w_k + \varepsilon (g - Hw_k), \\ \text{where } H := \mathbb{E}[xx^T], \quad g := \mathbb{E}[xy], \quad c := \mathbb{E}[y^2]. \end{array}$

Linear regression model:

Input:
$$x \in \mathbb{R}^d$$
 Label: $y \in \mathbb{R}$ Model: $y = x^T w^* + \text{noise}$
OLS regression with BN

Optimization problem: $\min_{a,w} J(a,w) = \mathbb{E}_{x,y} \left[\frac{1}{2} \left(y - a \ \mathsf{N}(x^T w) \right)^2 \right]$ Gradient descent dynamics:

$$\begin{cases} a_{k+1} = a_k - \varepsilon_a \nabla_a J(a_k, w_k) = a_k + \varepsilon_a \Big(\frac{w_k^T g}{\sqrt{w_k^T H w_k}} - a_k \Big), \\ w_{k+1} = w_k - \varepsilon \nabla_w J(a_k, w_k) = w_k + \frac{\varepsilon a_k}{\sqrt{w_k^T H w_k}} \Big(g - \frac{w_k^T g}{w_k^T H w_k} H w_k \Big). \end{cases}$$

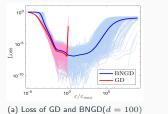
How does this compare with the GD case?

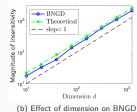
$$w_{k+1} = w_k - \varepsilon \nabla_w J_0(w_k) = w_k + \varepsilon (g - Hw_k)$$

Properties of interest: convergence, robustness

Summary of Theoretical Results

Property	Gradient Descent	Gradient Descent with BN
Convergence	only for small $arepsilon$	arbitrary ε provided $\varepsilon_a \leq 1$
Convergence Rate	linear	linear (can be faster)
Robustness to Learning Rates	small range of $arepsilon$	wide range of $arepsilon$
Robustness to Dimensions	no effect	the higher the better

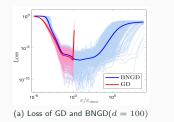


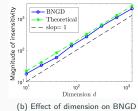


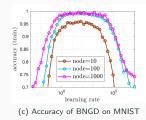
Summary of Theoretical Results

Property	Gradient Descent	Gradient Descent with BN
Convergence	only for small $arepsilon$	arbitrary ε provided $\varepsilon_a \leq 1$
Convergence Rate	linear	linear (can be faster)
Robustness to Learning Rates	small range of $arepsilon$	wide range of $arepsilon$
Robustness to Dimensions	no effect	the higher the better

• Those properties are also observed in neural network experiments.







Poster: Pacific Ballroom #54