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Background

 Question: Conversely, can optimization benefit 

from learning ?   

• Most machine learning problems are, in the end, optimization problems

 SVM

 K-Means 

 …

 Deep Learning

 Optimization plays a very important role in learning

--- personal opinions: In general, what the computers can do is nothing more than 

“computation”. Thus, to assign them the ability to “learn”, it is often desirable to 

convert a “learning” problem into some kind of computational problem. 

min
𝑥

𝑓 𝑥, data , 𝑠. 𝑡. 𝑥 ∈ Θ



Learning-based Optimization

• Gregor K, Lecun Y. Learning fast approximations of sparse coding. ICML 2010.

• P. Sprechmann, A. M. Bronstein, and G. Sapiro Learning, Efficient Sparse and Low Rank Models, TPAMI 2015

• Yan Yang, Jian Sun, Huibin Li, Zongben Xu. ADMM-Net: A deep learning approach for compressive sensing MRI, NeurIPS 2016.

• Brandon Amos, J. Zico Kolter. OptNet: optimization method as a layer in neural network. ICML 2017.

𝑥𝑡+1 = 𝑔(𝑥𝑡)

 A traditional optimization algorithm is indeed an ultra-deep 

network with fixed parameters

min
𝑥

𝑓 𝑥, data , 𝑠. 𝑡. 𝑥 ∈ Θ

𝑥𝑡+1 = ℎ𝜃 𝑊𝑒𝑦 + 𝑆𝑥𝑡

min
𝑥

∥ 𝑦 − 𝐴𝑥 ∥2
2 +𝜆 ∥ 𝑥 ∥1

𝑆 = 𝐼 −
𝐴𝑇𝐴

𝜌
,𝑊𝑒 =

𝐴𝑇

𝜌

 Learning-based optimization: Introduce learnable parameters and “reduce” 

the network depth, so as to improve computational efficiency



Learning-based Optimization (Con’t)

 Limits of existing work

• In a theoretical point of view, it is unclear why learning can 

improve computational efficiency, as theoretical convergence 

analysis is extremely rare

 X. Chen, J. Liu, Z. Wang, W. Yin, Theoretical linear 

convergence of unfolded ISTA and its practical weights and 

thresholds, NeurIPS, 2018. 

 specific to unconstrained problems



D-LADMM: Differentiable Linearized ADMM

Target constrained problem:

D-LADMM:LADMM (Lin et al, NeurIPS 2011):

learnable param.:

are learnable non-linear functions

knownconvex



D-LADMM (Con’t)

Q1: Can D-LADMM guarantee to solve correctly the optimization problem?

Q2: What are the benefits of D-LADMM?

Q3: How to train the model of D-LADMM?

Questions:



Main Assumption

generalized
none-emptiness of 

Assumption 1

 assumption required by 

LADMM:

 assumption required by  

D-LADMM:



Theoretical Result I

Q1: Can D-LADMM guarantee to solve correctly the optimization problem?

A1: Yes!

Theorem 1 and Theorem 2 [Convergence and Monotonicity] (informal). 

D-LADMM’s k-th layer output solution set of original problem distance to the solution set



Theoretical Result II

Q2: What are the benefits of D-LADMM?    A2: Converge faster!

Lemma 4.4 [Faster Convergence] (informal). 

Define operators:

For any 𝜔, 

General case (no EBC):

linear convergence 

Theorem 3 [Convergence Rate] (informal). 

If the original problem satisfies Error Bound Condition (condition on A and B), then

D-LADMM > LADMM



Training Approaches 

 Unsupervised way: minimizing duality gap

where                                                              is the dual function.

Global optimum is attained whenever the objective (duality gap) reaches zero!

 Supervised way: minimizing square loss

ground-truth 𝑍∗ and 𝐸∗ are provided along with the training samples

Q3: How to train the model of D-LADMM?



Experiments

Target optimization problem

15-layer D-LADMM achieves a performance comparable to, or even 

slightly better than, the LADMM algorithm with 1500 iterations!

Table 1. PSNR comparison on 12 images with noise rate 10%. 



Conclusion

LADMM D-LADMM

Convergence: D-LADMM layer-

wisely converges to the desired 

solution set

Speed: D-LADMM converges to the 

solution set faster than LADMM does

Theory

Empiricism

minimizing duality gap

(unsupervised)
minimizing square loss

(supervised)


