ICML | 2019

Thirty-sixth International
Conference on Machine Learning

" il

Xingyu Xie™ ! Jianlong Wu™ ! Zhisheng Zhong! Guangcan Liu* 2 Zhouchen Lin*% !

1 Key Lab. of Machine Perception, School of EECS, Peking University
2B-DAT and CICAEET, School of Automation, Nanjing University of Information Science and Technology



Background

o Optimization plays a very important role in learning

* Most machine learning problems are, in the end, optimization problems
= SVM
» K-Means

« Deep Learning

min f(x,data), s.t. xX€E€OB
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--- personal opinions: In general, what the computers can do is nothing more than
“computation”. Thus, to assign them the ability to “learn”, it 1s often desirable to
convert a “learning” problem into some kind of computational problem.

o Question: Conversely, can optimization benefit
from learning ?



earning-based Optimization

o Atraditional optimization algorithm is indeed an ultra-deep
network with fixed parameters
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o Learning-based optimization: Introduce learnable parameters and “reduce”
the network depth, so as to improve computational efficiency

« Gregor K, Lecun Y. Learning fast approximations of sparse coding. ICML 2010.

« P. Sprechmann, A. M. Bronstein, and G. Sapiro Learning, Efficient Sparse and Low Rank Models, TPAMI 2015

* Yan Yang, Jian Sun, Huibin Li, Zongben Xu. ADMM-Net: A deep learning approach for compressive sensing MRI, NeurlPS 2016.
Brandon Amos, J. Zico Kolter. OptNet: optimization method as a layer in neural network. ICML 2017.



Learning-based Optimization (Con’t)

o Limits of existing work

* |n a theoretical point of view, it is unclear why learning can
Improve computational efficiency, as theoretical convergence
analysis Is extremely rare

« X.Chen, J. Liu, Z. Wang, W. Yin, Theoretical linear
convergence of unfolded ISTA and its practical weights and
thresholds, NeurlPS, 2018.

minimize [|b — Az|l3 + Az

« specific to unconstrained problems



D-LADMM: Differentiable Linearized ADMM

Target constrained problem:
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LADMM (Lin et al, NeurlPs 2011):
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D-LADMM:

er—}—l = AZ;, + BE, — X,

Zi+1 = N0,), (Zi. — (W) Ak + B o Tit1)),
Tyi1 = AZgyr + BE, — X,

Eri1 = (0,), (Ek — (Wa)p Ak +Br o Tk+1)) :

| Akt1 = Ak + Br o (AZpy1 + BEg 1 — X),

n(-) and ((-) are learnable non-linear functions
learnable param.: © = {(W)r, (Wa)i, (01)r, (82)x, B}



D-LADMM (Con’t)
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Questions:

Q1: Can D-LADMM guarantee to solve correctly the optimization problem?
Q2: What are the benefits of D-LADMM?
Q3: How to train the model of D-LADMM?



Main Assumption

o assumption required by o assumption required by
LADMM: D-LADMM:
) generalized :
1 ATA =0 , none-emptiness of S(o,A) := {(W,0,8)||W —A| <0¢,D>0,8,0 >0}

w Assumption 1

W =A, 9:% and B8=1



Theoretical Result |

Q1: Can D-LADMM guarantee to solve correctly the optimization problem?
Al: Yes!

wi = (Zg, Ex, —Ag) Q* dist(w, )

D-LADMM’s k-th layer output solution set of original problem distance to the solution set

Theorem 1 and Theorem 2 [Convergence and Monotonicity] (informal).

dist(wpy1, ") > dist(wgr1,2%) — 0, as k — oo,
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Theoretical Result |1

Q2: What are the benefits of D-LADMM? A2: Converge faster!

Theorem 3 [Convergence Rate] (informal). D-LADMM > LADMM
If the original problem satisfies Error Bound Condition (condition on A and B), then

dist(wpy1, Q) < v dist(wyg, 2%), where 0 <y < 1. j linear convergence

General case (no EBC):

Lemma 4.4 [Faster Convergence] (informal).
Define operators: wy41 := 7o, (wi) for D-LADMM; wjy1 := T (wy) for LADMM.
For any w,

dist(To(w), Q%) < dist(T (w), Q7).



Training Approaches

Q3: How to train the model of D-LADMM?
o Unsupervised way: minimizing duality gap

min f(Zx) + 9(Ex) — d*(Ax),
where d*(Ax) = nf f(Z) + g(E) + (Ax, AZ + BE — X) IS the dual function.

Global optimum is attained whenever the objective (duality gap) reaches zero!

o Supervised way: minimizing square loss
min [|Zx - Z*[|% + [Ex — B*|5.

ground-truth Z* and E* are provided along with the training samples



Experiments

Target optimization problem

min A|Z[l + [[E[:, st X = AZ+E.

Table 1. PSNR comparison on 12 images with noise rate 10%.

PSNR Images
Barb | Boat | France | Frog | Goldhill | Lena | Library | Mandrill | Mountain | Peppers | Washsat | Zelda
Baseline 15.4 15.3 14.5 15.6 15.4 15.4 14.2 15.6 14.4 15.1 15.1 15.2
LADMM (iter=15) 22.1 24.2 18.0 23.1 25.2 25.6 15.0 21.7 17.7 25.1 30.6 29.7
LADMM (iter=150) 27.9 29.8 21.6 26.5 30.4 31.3 17.8 24.3 20.5 30.0 34.5 35.7
LADMM (iter=1500) | 29.9 | 31.1 22.2 26.9 31.8 33.2 18.0 25.1 20.7 32.8 36.2 37.8
D-LADMM (K =15) 29.5 | 31.3 21.9 25.9 32.5 35.1 18.8 24.5 19.3 34.3 35.6 38.9

15-layer D-LADMM achieves a performance comparable to, or even
slightly better than, the LADMM algorithm with 1500 iterations!



Conclusion

min f(Z)+ g(E), s.t. X =AZ+ BE,
Z,.E Convergence: D-LADMM layer-

/ \ " wisely converges to the desired
Theory

LADMM —— D-LADMM J solution set

. Speed: D-LADMM converges to the
Empiricism solution set faster than LADMM does
minimizing duality gap minimizing square loss

(unsupervised) (supervised)



