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Overview

Gradient descent and its variants are the most popular method of optimizing neural networks.

The performance of these optimizers is highly dependent on the local curvature of the loss
surface

−→ important to study the loss curvature

We present a scalable algorithm for computing the full eigenvalue density of the Hessian for
deep neural networks.

We leverage this algorithm to study the effect of architecture / hyper-parameter choices on the
optimization landscape.
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Basic Definitions

θ ∈ Rn is the model parameter. L(θ) ≡ 1
N
∑N

i=1 L(θ, (xi , yi )).

The Hessian matrix, H, is an n × n symmetric matrix of second derivatives:

H(θt )i,j =
∂2L
∂θi∂θj

|θ=θt

H(θ) represents the (local) loss curvature at point θ.

H(θ) has eigenvalue-eigenvector pairs (λi , qi )
n
i=1 with λ1 ≥ λ2 · · · ≥ λn.

λi is the curvature of the loss in direction of qi in the neighborhood of θ.

We focus on estimating the empirical distribution of λi as a concrete way to study the loss
curvature.
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Hessian Computation in Deep Networks

The eigenvalue distribution function of H is defined as

φ(t) =
1
n

n∑
i=1

δ(t − λi )

Let fσ(x) = 1
σ
√

2π
exp(− x2

2σ2 ) be the Gaussian density.

φ(t) = 1
n
∑n

i=1 δ(t − λi )
φ∗f (t)−−−−−−−−−−−−−−−→

Convolution with Gaussian
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Estimating the Smoothed Density

Gene Golub and his students [Golub and Welsch (1969); Bai et al. (1996)]

Constructs
(
wi , `i

)m
i=1 such that for all "nice" functions g,

1
n

n∑
i=1

g(λi ) ≈
m∑

i=1

wi g(`i )

Use g(x) = fσ(t − x):

φσ(t) =
1
n

n∑
i=1

fσ(t − λi ) ≈ φ̂(t) =
1
m

m∑
i=1

wi fσ(t − `i )
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Algorithm Sketch

Stochastic Draw v ∼ N (0, 1
n In)

Lanczos 1 Compute a basis for {v ,Hv , · · · ,Hm−1v}. Call this basis V .
2 Let T = V T HV

Quadrature 1 Diagonalize T = UDUT .
2 Estimate φσ(t) = 1

n
∑n

i=1 f (t − λi ) with φ̂v (t) =
∑m

i=1 U2
1,i f (t − Di,i )

Computational Complexity

Calculating
(
wi , `i

)m
i=1 takes O(m ×model size× dataset size). In practice, m ≈ 100 is more

than enough.

Explicitly calculating the eigenvalues takes O(model size2 × dataset size).
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Accuracy

The algorithm enjoys strong theoretical guarantees.

We present some such guarantees in our paper. Ubaru et al. (2017) provide additional details.

Figure: Comparison of a degree 90 quadrature approximation with the actual Hessian density. The Hessian is calculated from a
2-layer network with 15910 parameters trained on MNIST.
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Let’s Train a ResNet-32

460K parameters.

Trained on CIFAR-10.

The network has Batch-Normalization (Ioffe and Szegedy (2015)).
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Experiments: Initialization

At initialization time, the Hessian has significant negative eigenvalues.

This points to a significant local non-convexity of the network at time 0.

There is a significant difference between the initialization landscape and the training
landscape.

For small datasets such as CIFAR-10 / MNIST, negative directions disappear extremely fast.

Behrooz Ghorbani Hessian Spectral Density June 2019 9 / 18



Experiments: Initialization

At initialization time, the Hessian has significant negative eigenvalues.

This points to a significant local non-convexity of the network at time 0.

There is a significant difference between the initialization landscape and the training
landscape.

For small datasets such as CIFAR-10 / MNIST, negative directions disappear extremely fast.

25 20 15 10 5 0 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

H
e
ss

ia
n
 E

ig
e
n
v
a
lu

e
 D

e
n
si

ty
 (

Lo
g
 S

ca
le

)

Step 0

Behrooz Ghorbani Hessian Spectral Density June 2019 9 / 18



Experiments: Initialization

At initialization time, the Hessian has significant negative eigenvalues.

This points to a significant local non-convexity of the network at time 0.

There is a significant difference between the initialization landscape and the training
landscape.

For small datasets such as CIFAR-10 / MNIST, negative directions disappear extremely fast.

25 20 15 10 5 0 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

H
e
ss

ia
n
 E

ig
e
n
v
a
lu

e
 D

e
n
si

ty
 (

Lo
g
 S

ca
le

)

Step 0

Behrooz Ghorbani Hessian Spectral Density June 2019 9 / 18



Experiments: Initialization

At initialization time, the Hessian has significant negative eigenvalues.

This points to a significant local non-convexity of the network at time 0.

There is a significant difference between the initialization landscape and the training
landscape.

For small datasets such as CIFAR-10 / MNIST, negative directions disappear extremely fast.

25 20 15 10 5 0 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

H
e
ss

ia
n
 E

ig
e
n
v
a
lu

e
 D

e
n
si

ty
 (

Lo
g
 S

ca
le

)

Step 515

Behrooz Ghorbani Hessian Spectral Density June 2019 9 / 18



Experiments: Initialization

At initialization time, the Hessian has significant negative eigenvalues.

This points to a significant local non-convexity of the network at time 0.

There is a significant difference between the initialization landscape and the training
landscape.

For small datasets such as CIFAR-10 / MNIST, negative directions disappear extremely fast.

25 20 15 10 5 0 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

H
e
ss

ia
n
 E

ig
e
n
v
a
lu

e
 D

e
n
si

ty
 (

Lo
g
 S

ca
le

)

Step 0

25 20 15 10 5 0 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

H
e
ss

ia
n
 E

ig
e
n
v
a
lu

e
 D

e
n
si

ty
 (

Lo
g
 S

ca
le

)

Step 515

Behrooz Ghorbani Hessian Spectral Density June 2019 9 / 18



Experiments: Further Training

After the first epoch, the Hessian spectrum stabilizes.

The Hessian contains information about non-local geometry of the loss.

The eigenvalues of the Hessian at this stage determine if the network can be trained
effectively.

Figure: Spectrum of the network stabilizes after the first epoch.
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Experiments: Reducing Learning Rate

Prevalent view: smaller learning rates allow you to converge to sharper local minima.

Reducing the learning rate should bring about an increase in the top eigenvalue.
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Experiments: Reducing Learning Rate

Prevalent view: smaller learning rates allow you to converge to sharper local minima.
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Figure: Learning rate is reduced by a factor of 10 at step 40k. Surprisingly, the top eigenvalue also decreases.
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Experiments: End of the Training

The Hessian spectrum at the end of the training:
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Figure: Spectrum of the Hessian after 100k steps of training. The smallest eigenvalue is≈ −0.0006.
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Examining the Role of Architecture

Let’s remove Batch-Normalization from the network and reexamine the spectrum!

Figure: Spectrum of the Hessian after 7k steps of training. Outlier eigenvalues appear when BN is removed from the network.
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Experiments: Batch-Normalization

This observation is consistent over different architectures / datasets:

Figure: The eigenvalue comparison of the Hessian of Resnet-18 trained on ImageNet dataset. Model with BN is shown in
blue and the model without BN in red. The Hessians are computed at the end of training.
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Experiments: Batch-Normalization

Our intuition from convex optimization suggests that first-order methods slow down
significantly when λi are highly spread out. [see Bottou and Bousquet (2008) for explicit
bounds]

Often quantities such as Condition number, κ ≡ λ1
λn

, are used to measure this spread.

Let’s test this assertion!

Conjecture
Batch-Normalization helps optimization by removing large outlier eigenvalues.
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BN with Population Statistics

Our observations suggest that BN is effective because it removes the outlier eigenvalues of
the Hessian.

We predict that in scenarios where BN is not effective, outlier eigenvalues are still present.

Example: When statistics of the BN layer are computed from the full-dataset.

Figure: Optimization progress (in terms of loss) of batch normalization with mini-batch statistics and population statistics.
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BN with Population Statistics

Figure: The Hessian spectrum for a Resnet-32 after 15k steps. On the left BN is using mini-batch statistics. The network on
the right is using population statistics.
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Any Questions?

Hope to see you at our poster session today (06:30 to 09:00 at Pacific Ballroom #51)

Zhaojun Bai, Gark Fahey, and Gene Golub. Some large-scale matrix computation problems.
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Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in neural
information processing systems, pages 161–168, 2008.

Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. Mathematics of
computation, 23(106):221–230, 1969.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via stochastic lanczos
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