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ADMM and Its Variants Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (ADMM)

I Goal is to solve
minimize

x∈Rd
f(x) + g(Ax) (1)

. f(x) and g(y) are defined on Rd and Rm, separately

. Allow f and g to be nonsmooth functions in (1)

I Rewrite (1) as
minimize
x∈Rd,z∈Rm

f(x) + g(z)

subject to Ax− z = 0
(2)

I Scatters everywhere in statistical learning and signal processing:
Lasso, logistic regression, elastic net, and many more
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ADMM and Its Variants Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (ADMM)

minimize
x∈Rd,z∈Rm

f(x) + g(z)

subject to Ax− z = 0

I We adopt the Generalized ADMM (G-ADMM) setting for solving
(2), which introduces a new relaxation parameter α ∈ (0, 2)
Algorithm proposed by [Eckstein-Bertsekas 1992]:

xk+1 = argmin
x

{
f(x) +

ρ

2
‖Ax− zk + uk‖22

}
(3a)

zk+1 = argmin
z

{
g(z) +

ρ

2

∥∥∥∥αAxk+1 + (1− α)zk − z + uk

∥∥∥∥2
2

}
(3b)

uk+1 = uk + (αAxk+1 + (1− α)zk − zk+1) (3c)

I When α = 1, convergence rate is known
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ADMM and Its Variants Linearized ADMM

Linearized ADMM

I f is nonsmooth with easy proximal mappings
I First-order Talor approximation to the second term of (3a):

xk+1 = argmin
x

{
f(x) +

τL
2

∥∥∥∥x− (xk − ρ

τL
A>(Axk − zk + uk)

)∥∥∥∥2
2

}
(4a)

I Total variation minimization problem [Ruding-Osher-Fatemi 1992]

minimize
x,z

1

2
‖x− b‖22 + λ‖z‖1

subject to z = Dx

(4a) and (3b) respectively correspond to the proximal mappings of

‖ · ‖1 and
1

2
‖ · −b‖22
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ADMM and Its Variants Gradient Based ADMM

Gradient Based ADMM

I f is differentiable but does not have an easy proximal mapping
I g is nonsmooth with easy proximal mappings
I A gradient step is taken instead of minimizing the augmented

Lagrangian function directly

xk+1 = xk −
1

τG

(
∇f(xk) + ρA>(Axk − zk + uk)

)
(5a)

I Sparse logistic regression problem as an example

minimize
x

1

N

N∑
i=1

log(1 + exp(−bi(a>i x+ v))) + λ‖x‖1 (6)
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Theory of Continuous Limit

Continuous Limit of G-ADMM

We study the continuous limit of the generalized ADMM (G-ADMM):
The seminal work [Su-Boyd-Candes 2014] provide new insights
on understanding the convergence of (accelerated) gradient
method: connecting (a second-order) ODE to the continuous limit
of AGM
Many follow-up works on AGM variants: FISTA, heavy ball method
using continuous dynamical systems [Shi-Du-Jordan-Su 2018,
Wibisono-Wilson-Jordan 2016, Wilson-Recht-Jordan 2016,
Krichene-Bayen-Bartlett 2015]
Very recently, [Franca-Robinson-Vidal 2018a, b] made a
significant step towards understanding G-ADMM using the tools of
Differential Equation for the cases where f and g are both smooth
We now extend the analysis to problems with nonsmooth f and g,
using Differential Inclusion
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Theory of Continuous Limit Continuous Limit of Linearized And Gradient Based ADMM

Continuous Limit of Linearized and Gradient Based
ADMM

The continuous-time limit of the iterates {xk} of linearized ADMM (4a)
and gradient-based ADMM (5) is given by the differential inclusion

0 ∈ ∂F (X(t)) +

(
cI +

1− α
α

A>A

)
Ẋ(t) (7)

Solution X(t) of differential inclusion (7) has O(t−1) convergence rate:

F (X(t))− F (x∗) ≤ κ21‖x0 − x∗‖22
2t

. Rescale the time by setting t = ρ−1k

. ρ→∞ and τL/ρ→ c ∈ (0,∞) (τG/ρ→ c for gradient-based)

. Initial value X(0) = x0

. κ21 is defined to be the largest eigenvalue of
(
cI + (1− α)/αA>A

)
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Theory of Continuous Limit Continuous Limit of Linearized And Gradient Based ADMM

Continuous Limit of G-ADMM

The continuous limit of iterates of {xk} in Algorithm (3) is given by the
following differential inclusion:

1

α
(A>A)Ẋ(t) + ∂F (X(t)) 3 0 (8)

Let x∗ be a minimizer of F . Solution X(t) of differential inclusion (8)
has O(t−1) convergence rate:

F (X(t))− F (x∗) ≤ σ21‖x0 − x∗‖22
2αt

(9)

. Rescale the time by setting t = ρ−1k

. ρ→∞

. Initial value X(0) = x0

. σ1 is defined to be the largest singular value of matrix A
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Theory of Continuous Limit Continuous Limit of Acc-G-ADMM

Continuous Limit of Accelerated G-ADMM
1

α
(A>A)

(
Ẍ(t) +

r

t
Ẋ(t)

)
+ ∂F (X(t)) 3 0 (10)

I Algorithm (omitted here) first proposed by
[Goldstein-O’Donoghue-Setzer-Baraniuk 2014]

Theorem

. (High Friction) When r ≥ 3

F (X(t))− F (x∗) ≤ C(r, α, σ1)‖x0 − x∗‖22
t2

. (Low Friction) When 0 < r < 3

F (X(t))− F (x∗) ≤ C(r, α, σ1)‖x0 − x∗‖22
t2r/3
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A Numerical Example

Total Variation Minimization: Numerical Experiments

minimize
x,z∈Rn

1

2
‖x− b‖22 + λ‖z‖1

subject to z = Dx

Fits to our problem with A = D, f(x) =
1

2
‖x− b‖22 and g(z) = λ‖z‖1

Figure: On total variation minimization problem, the plots are the trajectory of
linearized ADMM with ρ = 10 and the corresponding differential inclusion, the
first plot is for different α from 2−3 to 2 when c = 10, second plot is for different
c from 1 to 32 when α = 1.6
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A Numerical Example

Sparse Logistic Regression: Numerical Experiments

minimize
x∈Rd−1,v∈R

1

N

N∑
i=1

log(1 + exp(−bi(a>i x+ v)) + λ‖z‖1

subject to z = x

Fits to our problem with x̄ = (x, v), f(x̄) = log(1 + exp(−bi(a>i x+ v)),
A = I, and g(x̄) = λ‖x̄1:n‖1

Figure: On sparse logistic regression, the plots are gradient ADMM and the
differential inclusion when ρ = 10, first plot is for different α from 2−3 to 2
when c = 10, second plot is for different c from 1 to 32 when α = 1.6
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Conclusion

Conclusion

I ADMM is a very popular practical algorithm for large-scale
statistical learning and signal processing tasks

I Differential inclusions associated with nonsmooth ADMM variants
can provide new insights into those algorithms

I We provide the first formulation of those differential inclusions for
G-ADMM with relaxation parameters

I Continuous-time rate in (9) matches existing discrete-time
analysis [He-Yuan 2012, Eckstein-Yao 2015], but can be proved
sharper than O(t−1)
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Conclusion

Thank You!
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