Improved Convergence for ℓ_{∞} and ℓ_{1} Regression via Iteratively Reweighted Least Squares

Alina Ene, Adrian Vladu

Basic primitive:

Basic primitive:

solution given by one linear system solve

 $\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}$

*

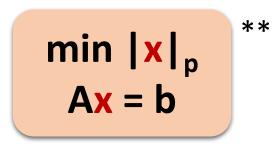
Basic primitive:

min ∑r_ix_i² Ax = b

solution given by one linear system solve

$$\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}$$

"Hard" problem:



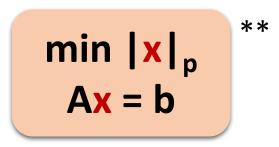
Basic primitive:

min ∑r_ix_i² Ax = b

solution given by one linear system solve

$$\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}^{*}$$

"Hard" problem:



equivalent to linear programming

Basic primitive:

solution given by one linear system solve

$$\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}^{*}$$

"Hard" problem:

equivalent to linear programming

Basic primitive:

min ∑r_ix_i² Ax = b

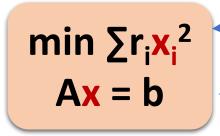
solution given by one linear system solve

$$\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}^{*}$$

"Hard" problem:

equivalent to linear programming

Basic primitive:



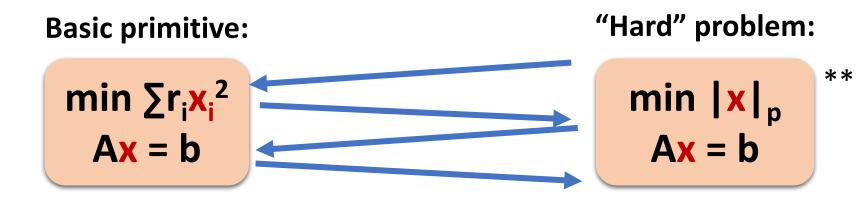
"Hard" problem:

solution given by one linear system solve

$$\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}^{*}$$

* R = diag(r)

equivalent to linear programming

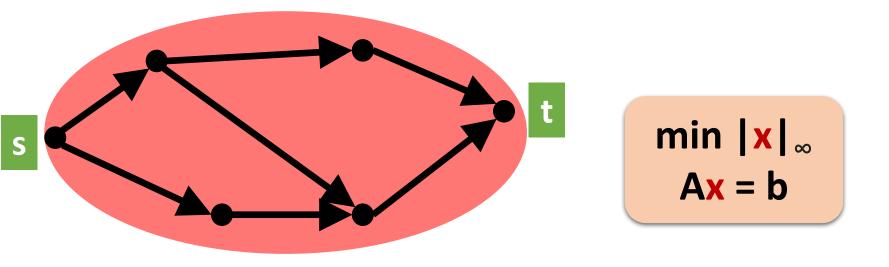


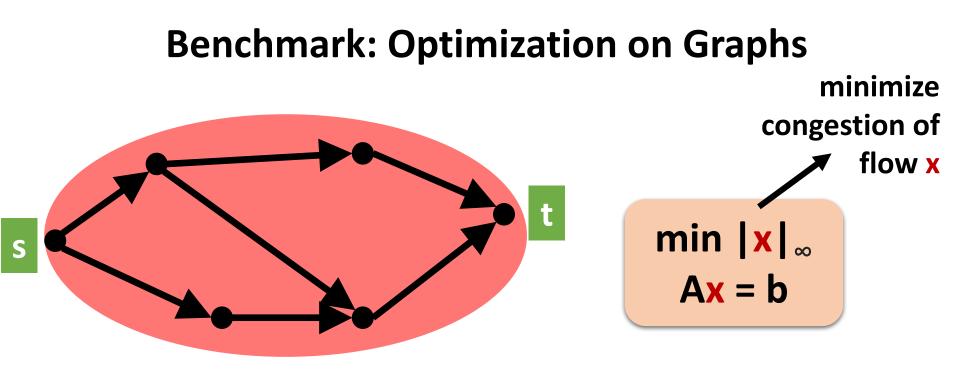
solution given by one linear system solve

$$\mathbf{x} = \mathbf{R}^{-1}\mathbf{A}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}^{*}$$

equivalent to linear programming

*
$$R = diag(r)$$





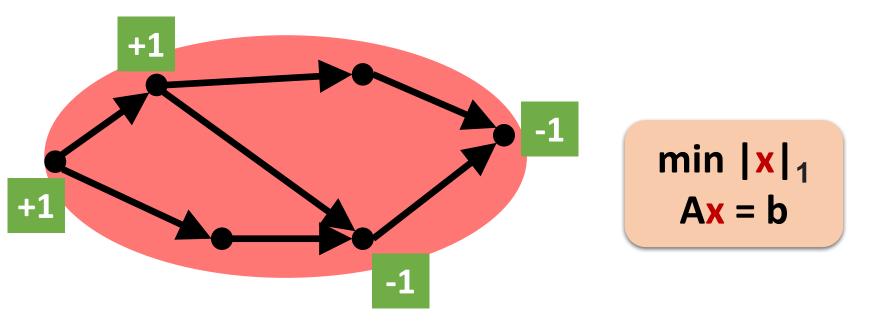
Benchmark: Optimization on Graphs minimize congestion of flow **x** min |x|_∞ Ax = bboundary condition: x routes demand from s to t

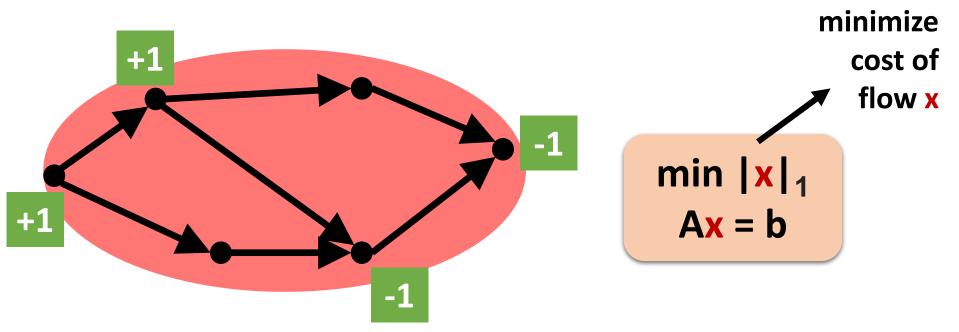
S

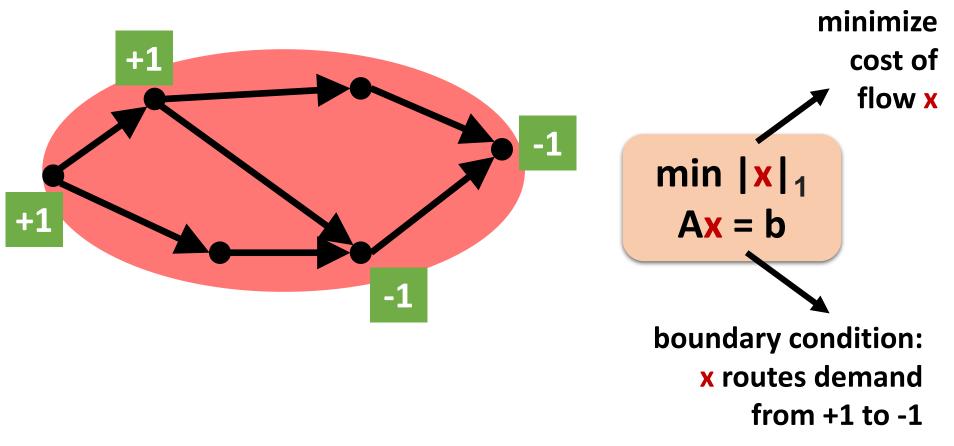
Benchmark: Optimization on Graphs minimize congestion of .5 flow **x** .5 min $|\mathbf{x}|_{\infty}$ Ax = b.5

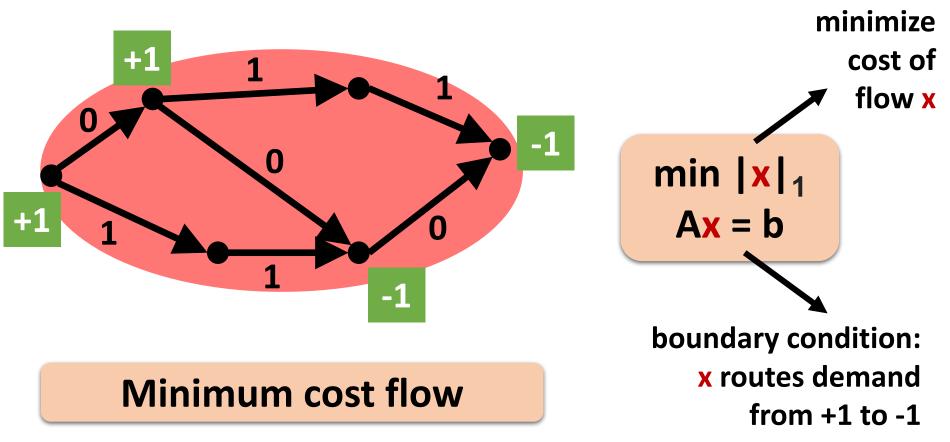
boundary condition: x routes demand from s to t

S



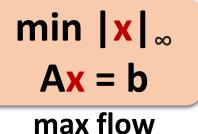




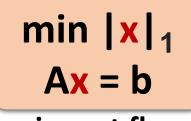


 $\frac{\min |\mathbf{x}|_{\infty}}{\mathbf{A}\mathbf{x} = \mathbf{b}}$

 $\begin{array}{l} \min \|\mathbf{x}\|_{1} \\ \mathbf{A}\mathbf{x} = \mathbf{b} \\ \min \operatorname{cost} \operatorname{flow} \end{array}$



Q: Are these problems really that hard?



min cost flow

Q: Are these problems really that hard? min |x|₁ Ax = b

min cost flow

First order methods (gradient descent)

min $|\mathbf{x}|_{\infty}$

Ax = b

max flow

- → running time strongly depends on matrix structure
- \rightarrow in general, takes time at least Ω(m^{1.5}/poly(ε))

Q: Are these problems really that hard?

max flow

min $|\mathbf{x}|_{\infty}$

Ax = b

 $\begin{array}{l} \min \|\mathbf{x}\|_{1} \\ \mathbf{A}\mathbf{x} = \mathbf{b} \\ \min \operatorname{cost} \operatorname{flow} \end{array}$

First order methods (gradient descent)

- → running time strongly depends on matrix structure
- \rightarrow in general, takes time at least Ω(m^{1.5}/poly(ε))

Second order methods (Newton method, IRLS)

- → interior point method: Õ(m^{1/2}) linear system solves
- \rightarrow can be made $\tilde{O}(n^{1/2})$ with a lot of work [Lee-Sidford '14]

min $|\mathbf{x}|_1$

Ax = b

min cost flow

Q: Are these problems really that hard?

max flow

min $|\mathbf{x}|_{\infty}$

Ax = b

First order methods (gradient descent)

- → running time strongly depends on matrix structure
- \rightarrow in general, takes time at least Ω(m^{1.5}/poly(ε))

Second order methods (Newton method, IRLS)

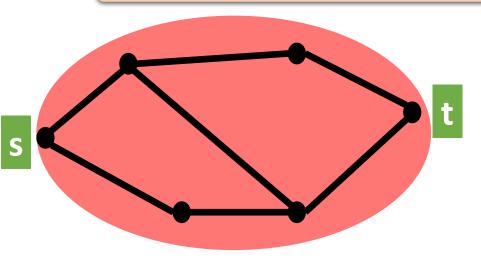
- → interior point method: Õ(m^{1/2}) linear system solves
- → can be made Õ(n^{1/2}) with a lot of work [Lee-Sidford '14]

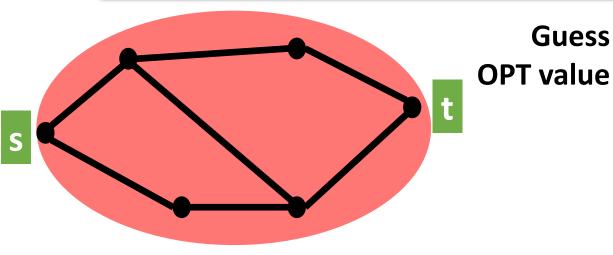
"Hybrid" method

- → [Christiano-Kelner-Madry-Spielman-Teng '11] Õ(m^{1/3}/ε^{11/3}) linear system solves
- → ~30 pages of description and proofs for complicated method

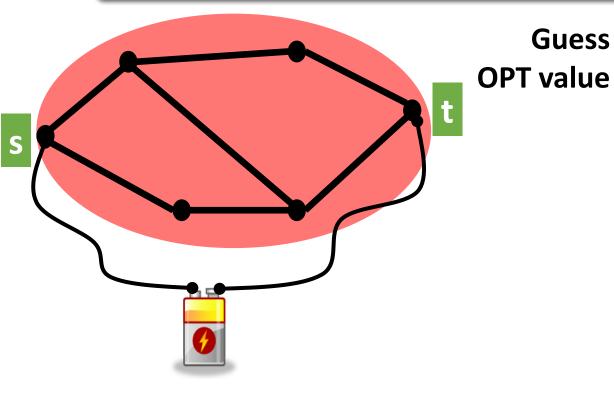
Natural IRLS method runs in $\tilde{O}(m^{1/3}/\epsilon^{2/3}+1/\epsilon^2)$ iterations

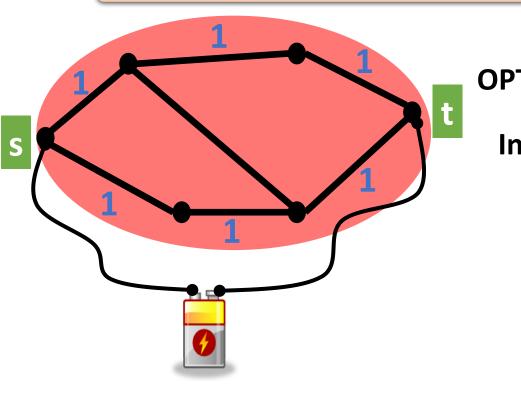
* no matter what the structure of the underlying matrix is

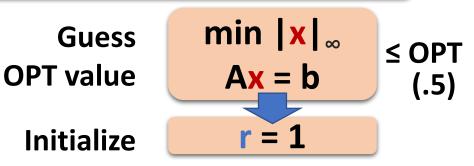


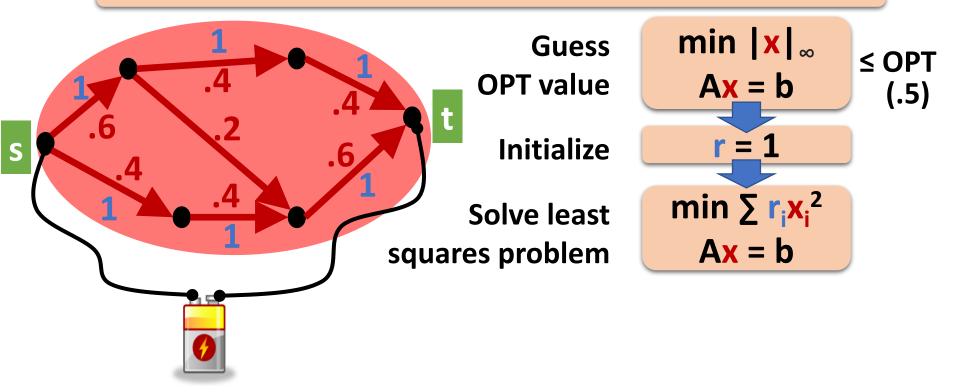


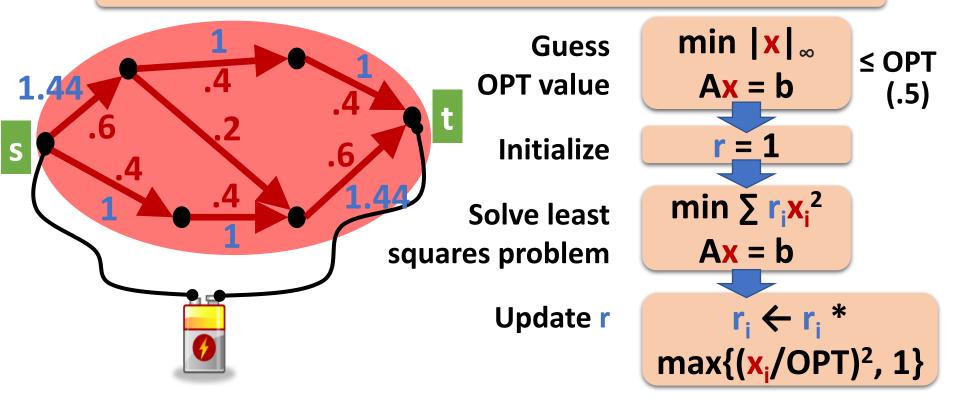
≤ OPT (.5)

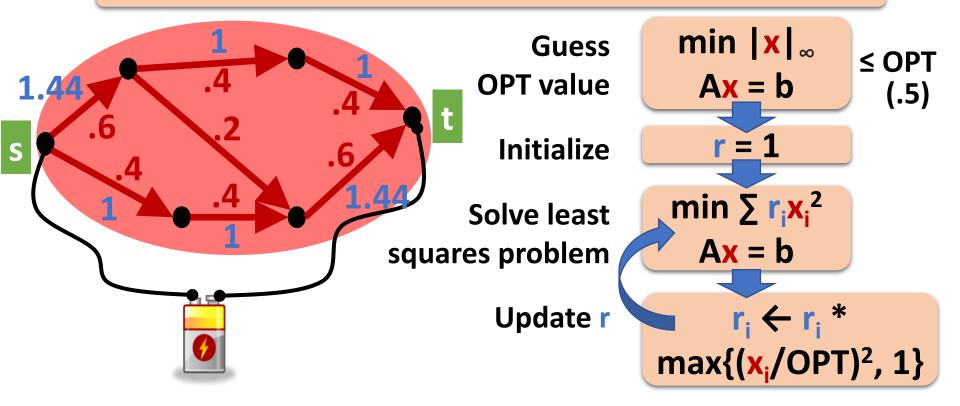




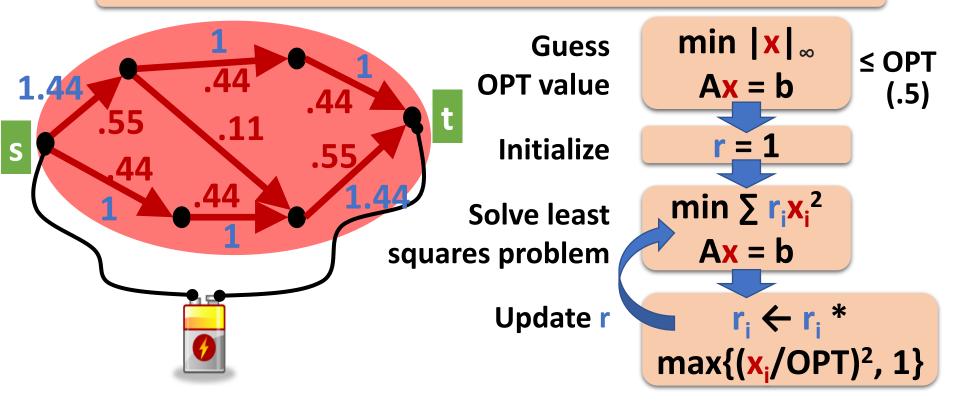


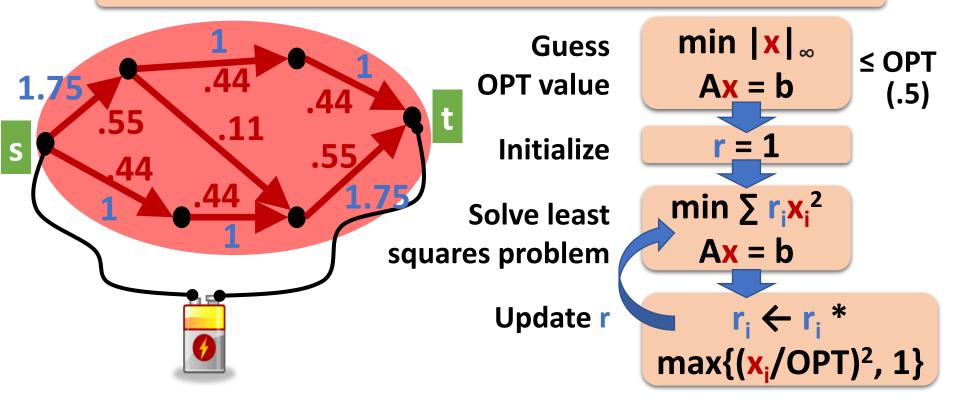


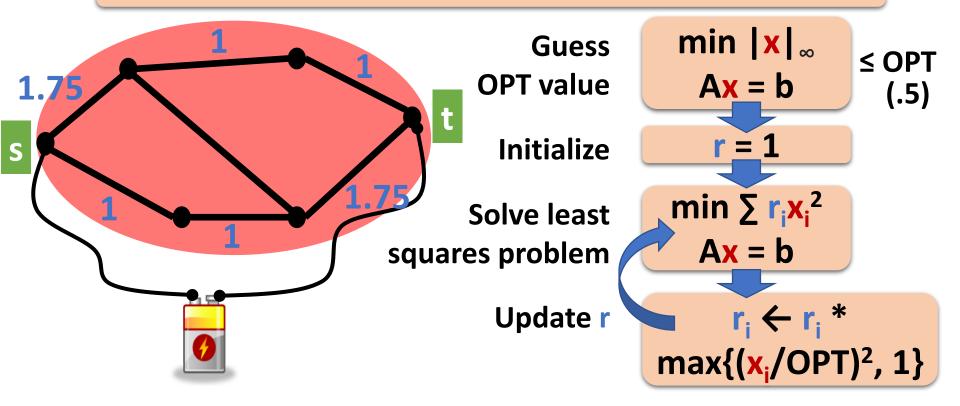


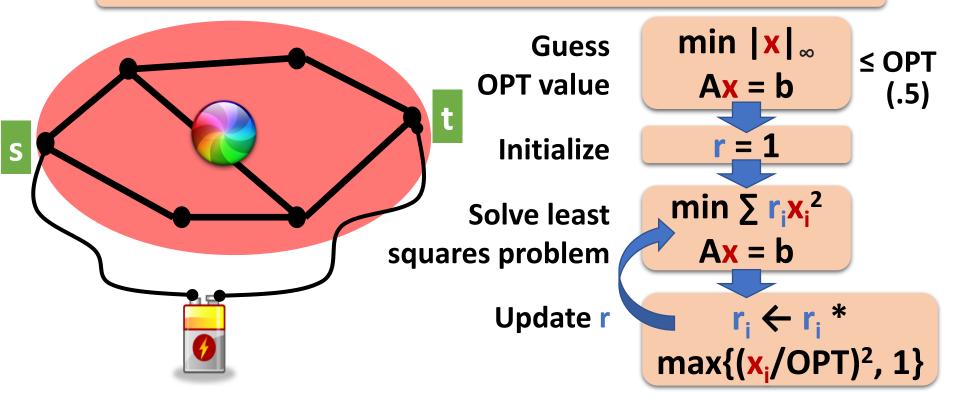


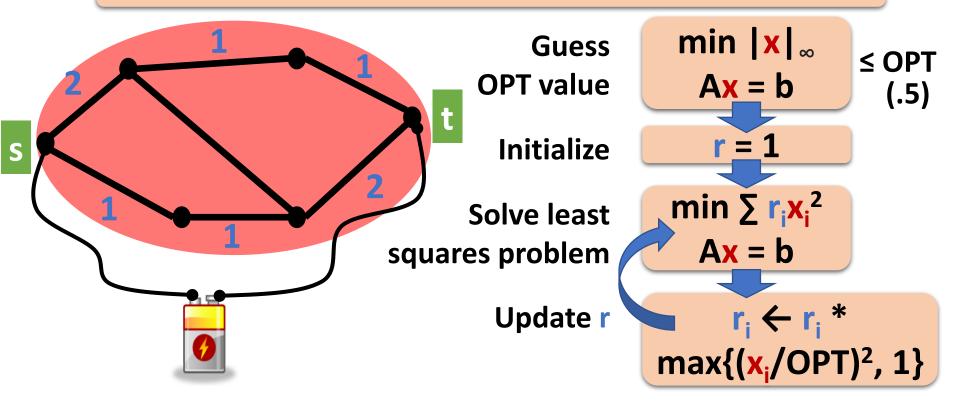


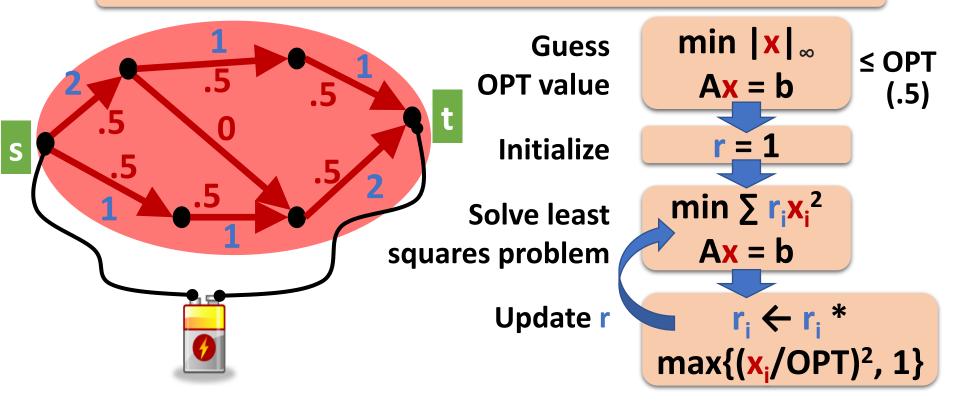








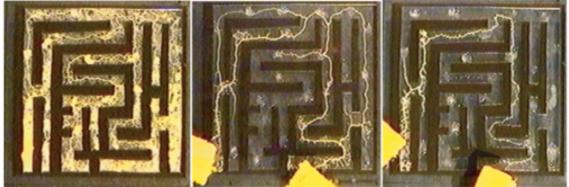




→ Objective function is $\max_{r\geq 0} \min_{Ax=b} \sum r_i x_i^2 / \sum r_i$

- → Objective function is $\max_{r\geq 0} \min_{Ax=b} \sum r_i x_i^2 / \sum r_i$
- → Similar analysis to packing/covering LP [Young '01]

- → Objective function is $\max_{r\geq 0} \min_{Ax=b} \sum r_i x_i^2 / \sum r_i$
- → Similar analysis to packing/covering LP [Young '01]
- → l₁ version is a type of "slime mold dynamics" [Straszak-Vishnoi '16, '17]



- → Objective function is $\max_{r\geq 0} \min_{Ax=b} \sum r_i x_i^2 / \sum r_i$
- → Similar analysis to packing/covering LP [Young '01]
- → l₁ version is a type of "slime mold dynamics" [Straszak-Vishnoi '16, '17]

- → Objective function is $\max_{r\geq 0} \min_{Ax=b} \sum r_i x_i^2 / \sum r_i$
- → Similar analysis to packing/covering LP [Young '01]
- → l₁ version is a type of "slime mold dynamics" [Straszak-Vishnoi '16, '17]
- → Any insights for new optimization methods?

Thank You!

More details at poster #208