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Main Results

• Several fundamental first-order methods for smooth or regularized
optimization possess a convergence rate of o(1/k) on convex
problems

• Better than the best known rate of O(1/k)

Hilbert space Euclidean space

Smooth optimization Gradient descent Coordinate descent

Regularized optimization Proximal gradient Proximal coordinate descent

• The key elements:

- Descent method
- Summability of f (xk)− f ∗ from an implicit regularization on the

iterate distance to the solution set

• The implicit regularization is algorithm-specific
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Gradient Descent

• Consider the following problem in a Hilbert space

min
x

f (x),

with the solution set Ω nonempty and f ∗ := minx f (x)

• f is L-Lipschitz continuously differentiable (called smooth from now
on) and convex

• xk+1 ← xk − αk∇f (xk) with αk such that for given γ ∈ (0, 1]
αmax ≥ αmin, and αmin ∈ (0, (2− γ)/L],{

αk ∈ [αmin, αmax],

f (xk − αk∇f (xk)) ≤ f (xk)− γαk
2 ‖∇f (xk)‖2

• Includes fixed step variants

• Best known existing convergence rate for f (xk)− f ∗ is O(1/k), and
we show a o(1/k) convergence rate
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Extension to Coordinate Descent

• Consider <n (n <∞) with the unit vectors {e1, . . . , en}, and the
function f has componentwise Lipschitz constants L1, . . . , Ln > 0
such that

|∇i f (x)−∇i f (x + hei )| ≤ Li |h| , for all x ∈ <n and all h ∈ <

• Given {L̄i}ni=1 such that L̄i ≥ Li for all i , the CD update is

xk+1 ← xk −
∇ik f (xk)

L̄ik
eik ,

where ik is the coordinate selected for updating at the kth iteration
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Stochastic Coordinate Descent

• Stochastic coordinate descent (SCD) picks each ik independently
following a pre-specified fixed probability distribution for all iterations:

pi > 0, i = 1, 2, . . . , n;
n∑

i=1

pi = 1 (1)

• Known similar O(1/k) convergence rates to f ∗ for E [f (xk)]
(expectation over the coordinate picks):

1 Nesterov (2012) for pi ∝ L̄βi with β ∈ [0, 1]
2 Qu and Richtárik (2016) for arbitrary sampling strategies

satisfying (1)

• We get the same improvement to o(1/k) for SCD with any samplings
satisfying (1)
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Regularized Optimization

• Consider regularized optimization of the form:

min
x

F (x) := f (x) + Ψ(x)

• f smooth and convex as above,

• Ψ: convex, extended-valued, proper, and closed, can be
nondifferentiable
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Proximal Gradient

• Proximal gradient (Bruck Jr., 1975): xk+1 ← xk + dk , where{
dk = argmind 〈∇f (xk) , d〉+ 1

2αk
‖d‖2 + Ψ(xk + d),

αk ∈ [αmin, αmax], F (xk + dk) ≤ F (xk)− γ
2αk
‖dk‖2

• Known: in Hilbert spaces, the same O(1/k) convergence rate as
gradient descent when f is convex

• We again get a o(1/k) convergence rate
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Proximal Coordinate Descent

• Assume:

- Euclidean space
- Ψ is separable: for z = (z1, . . . , zn), Ψ(z) =

∑n
i=1 Ψi (zi )

• Extended from proximal gradient: like the extension from GD to CD:

xk+1 ← xk + dk
ik
eik ,

dk
ik

:= argmin
d∈<

∇ik f (xk)d +
L̄ik
2
d2 + ψik ((xk)ik + d)

• Known O(1/k) convergence rates for convex f :

- Lu and Xiao (2015): uniform sampling
- Lee and Wright (2018): any sampling, with the additional

assumption

maxx :F (x)≤F (x0) dist(x ,Ω) <∞

• Again we extend the rate to o(1/k) for any fixed sampling strategies,
without any additional assumptions
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Thanks for Listening

See you at poster: Pacific Ballroom #207
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