RandomShuffle Beats SGD after Finite Epochs

Jeff HaoChen Suvrit Sra

Tsinghua University Massachusetts Institute of Technology

• Goal: to minimize the function

$$F(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

- SGD with replacement: (often appears in algorithm analysis)
 - $x_k = x_{k-1} \gamma \nabla f_{s(k)}(x_{k-1})$
 - s(k) uniformly random from $[n], 1 \le k \le T$

• SGD without replacement: (often appears in reality)

•
$$x_k^t = x_{k-1}^t - \gamma \nabla f_{\sigma_t(k)}(x_{k-1}^t)$$

• σ_t uniformly from random permutation of [n], $1 \le k \le n$

- SGD with replacement: (often appears in algorithm analysis)
 - $x_k = x_{k-1} \gamma \nabla f_{s(k)}(x_{k-1})$
 - s(k) uniformly random from $[n], 1 \le k \le T$

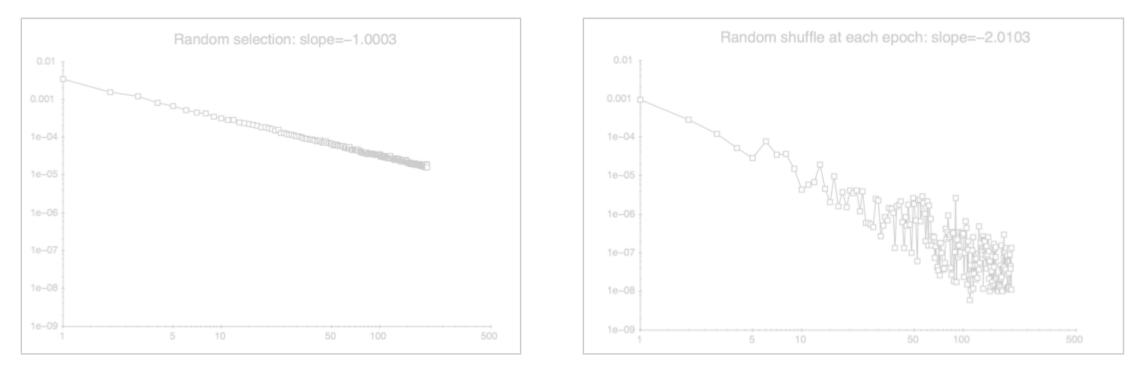
- SGD without replacement: (often appears in reality)
 - $x_k^t = x_{k-1}^t \gamma \nabla f_{\sigma_t(k)}(x_{k-1}^t)$
 - σ_t uniformly from random permutation of [n], $1 \le k \le n$

- SGD with replacement: (often appears in algorithm analysis)

 - s(k) uniformly random from $[n], 1 \le k \le T$

- SGD without replacement: (often appears in reality)
 - $x_k^t = x_{k-1}^t \gamma \nabla f_{\sigma_t(k)}(x_{k-1}^t)$ We call this RandomShuffle
 - σ_t uniformly from random permutation of [n], $1 \le k \le n$

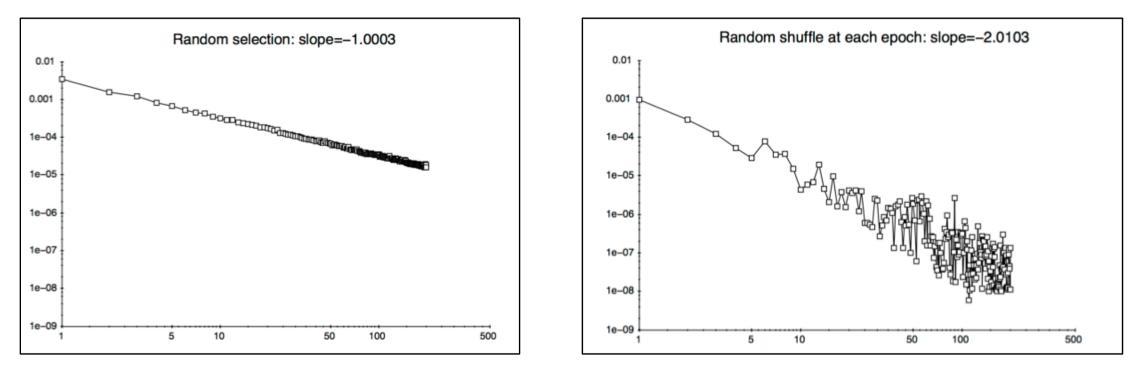
- So a natural question: which one is better?
- A Numerical Comparison: (*Bottou, 2009*)



SGD

RandomShuffle

- So a natural question: which one is better?
- A Numerical Comparison: (*Bottou, 2009*)



SGD

RandomShuffle

- Why?
- Intuitively, we should prefer RandomShuffle for the following two reasons:
 - It uses more "information" in one epoch (by visiting each component)
 - It has smaller variance for one epoch

• However, what is a rigorous proof?

- Why?
- Intuitively, we should prefer RandomShuffle for the following two reasons:
 - It uses more "information" in one epoch (by visiting each component)
 - It has smaller variance for one epoch

• However, what is a rigorous proof?

- Why?
- Intuitively, we should prefer RandomShuffle for the following two reasons:
 - It uses more "information" in one epoch (by visiting each component)
 - It has smaller variance for one epoch

• However, what is a rigorous proof?

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic: $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$egin{aligned} & \left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\| \end{aligned}$$

• Which we still don't know how to prove yet 😁

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic: $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$egin{aligned} & \left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\| \end{aligned}$$

• Which we still don't know how to prove yet 😁

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic: $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$\left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|$$

Which we still don't know how to prove yet ⁽³⁾

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic: $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$\left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|$$

Which we still don't know how to prove yet ☺

- What about the more general situation?
- We can try to show with a better convergence bound!
 - The hope is: prove a faster worst-case convergence rate of RandomShuffle
- A well-known fact: SGD converges with rate $O\left(\frac{1}{T}\right)$:

•
$$\mathbb{E}[\|x_T - x^*\|^2] \le O\left(\frac{1}{T}\right)$$

- What about the more general situation?
- We can try to show with a better convergence bound!
 - The hope is: prove a faster worst-case convergence rate of RandomShuffle
- A well-known fact: SGD converges with rate $O\left(\frac{1}{T}\right)$:

•
$$\mathbb{E}[\|x_T - x^*\|^2] \le O\left(\frac{1}{T}\right)$$

- What about the more general situation?
- We can try to show with a better convergence bound!
 - The hope is: prove a faster worst-case convergence rate of RandomShuffle
- A well-known fact: SGD converges with rate $O\left(\frac{1}{T}\right)$:

•
$$\mathbb{E}[\|x_T - x^*\|^2] \le O\left(\frac{1}{T}\right)$$

- One of the recent breakthrough: (Gürbüzbalaban, 2015)
 - Asymptotically RandomShuffle has convergence rate $O\left(\frac{1}{\tau^2}\right)$
 - But not sure what happen after finite epochs
- In contrast, there is a non-asymptotic result: (Shamir, 2016)
 - RandomShuffle is **no worse** than SGD, with provably $O\left(\frac{1}{T}\right)$ convergence rate
 - But cannot show that RandomShuffle is really faster

- One of the recent breakthrough: (Gürbüzbalaban, 2015)
 - Asymptotically RandomShuffle has convergence rate $O\left(\frac{1}{\tau^2}\right)$
 - But not sure what happen after finite epochs
- In contrast, there is a non-asymptotic result: (Shamir, 2016)
 - RandomShuffle is **no worse** than SGD, with provably $O\left(\frac{1}{T}\right)$ convergence rate
 - But cannot show that RandomShuffle is really faster

- One of the recent breakthrough: (Gürbüzbalaban, 2015)
 - Asymptotically RandomShuffle has convergence rate $O\left(\frac{1}{\tau^2}\right)$
 - But not sure what happen after finite epochs
- In contrast, there is a non-asymptotic result: (Shamir, 2016)
 - RandomShuffle is **no worse** than SGD, with provably $O\left(\frac{1}{\tau}\right)$ convergence rate
 - But cannot show that RandomShuffle is really faster

What happens in between?

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

Dheeraj Nagaraj et el. get rid of this constraint

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

this talk

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than $O\left(\frac{1}{\tau}\right)$? E.g., $O\left(\frac{1}{\tau^{1+\delta}}\right)$?
- If we can, then everything is solved \bigcirc
-unless we cannot $\ensuremath{\mathfrak{S}}$

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.

First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than $O\left(\frac{1}{\tau}\right)$? E.g., $O\left(\frac{1}{\tau^{1+\delta}}\right)$?
- If we can, then everything is solved S
-unless we cannot $\ensuremath{\mathfrak{S}}$

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.

First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than $O\left(\frac{1}{T}\right)$? E.g., $O\left(\frac{1}{T^{1+\delta}}\right)$?
- If we can, then everything is solved S
-unless we cannot ⊗

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.

- We only consider the case when T = n, i.e., we run one epoch of the algorithm
- We prove the theorem with a counter-example:

• Recall function
$$F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

• We set
$$f_i(x) = \begin{cases} \frac{1}{2}(x-b)'A(x-b), & i \text{ odd,} \\ \frac{1}{2}(x+b)'A(x+b), & i \text{ even.} \end{cases}$$

• A and b to be determined later...

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.

- We only consider the case when T = n, i.e., we run one epoch of the algorithm
- We prove the theorem with a counter-example:
 - Recall function $F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$

• We set
$$f_i(x) = \begin{cases} \frac{1}{2}(x-b)'A(x-b), & i \text{ odd,} \\ \frac{1}{2}(x+b)'A(x+b), & i \text{ even.} \end{cases}$$

• A and b to be determined later...

• Step 1: Calculate the error

•
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

•
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
, $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \right]$

- Step 3: Construct a contradiction
 - For contradiction, assume there is γ dependent on T achieving convergence $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

• Step 1: Calculate the error

•
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

•
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
, $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2$

- Step 3: Construct a contradiction
 - For contradiction, assume there is γ dependent on T achieving convergence $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

• Step 1: Calculate the error

•
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

•
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
, $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \right]$

- Step 3: Construct a contradiction
 - For contradiction, assume there is γ dependent on T achieving convergence $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

• Step 1: Calculate the error

•
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

•
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
, $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \right]$

- Step 3: Construct a contradiction
 - For contradiction, assume there is γ dependent on T achieving convergence $o\left(\frac{1}{\tau}\right)$

• Step 1: Calculate the error

•
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

• Step 2: Simplify via eigenvector basis decomposition

•
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
, $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2$

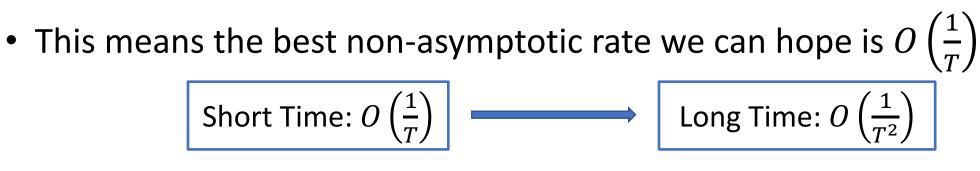
- Step 3: Construct a contradiction
 - For contradiction, assume there is γ dependent on T achieving convergence $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

Cannot be true for different λ_i !

What to do next?

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.

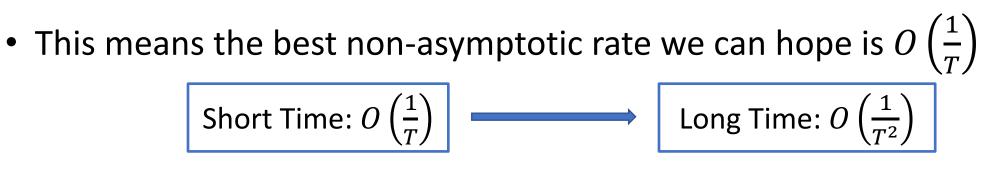


What happens in between?

- Key step: introduce *n* into the bound
 - The hope is if we can show bound like $O\left(\frac{n}{T^2}\right)$, RandomShuffle behaves better \bigcirc

What to do next?

Theorem 3. Given the information of μ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o $\left(\frac{1}{T}\right)$ for any $T \ge n$, if we do not allow n to appear in the bound.



What happens in between?

- Key step: introduce *n* into the bound
 - The hope is if we can show bound like $O\left(\frac{n}{T^2}\right)$, RandomShuffle behaves better S

Bounds dependent on *n*

For general second order differentiable functions with Lipschitz Hessian:

Theorem 2. Define constant $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$. So long as $\frac{T}{\log T} > Cn$, with step size $\eta = \frac{8\log T}{T\mu}$, RANDOMSHUFFLE achieves convergence rate: $\mathbb{E}[\|x_T - x^*\|^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right).$

Bounds dependent on *n*

• On one hand, RandomShuffle converges with

$$O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right)$$

• On the other hand, SGD converges with

$$O\left(\frac{1}{T}\right)$$

• So the take away is:

RandomShuffle is provably better than SGD after $O(\sqrt{n})$ epochs!

Bounds dependent on *n*

• On one hand, RandomShuffle converges with

$$O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right)$$

• On the other hand, SGD converges with

$$O\left(\frac{1}{T}\right)$$

• So the take away is:

RandomShuffle is provably better than SGD after $O(\sqrt{n})$ epochs!

Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

• A sparse problem can be written as:

$$F(x) = \sum_{i=1}^{n} f_i(x_{e_i})$$

- Where each e_i is a subset of all the dimensions [d]
- Consider a graph with *n* nodes, with edge (i, j) if $e_i \cap e_i \neq \emptyset$
- Define the sparsity level of the problem:

$$\rho = \frac{\max_{1 \le i \le n} |\{e_j : e_i \cap e_j \ne \emptyset\}|}{n}$$

• A sparse problem can be written as:

$$F(x) = \sum_{i=1}^{n} f_i(x_{e_i})$$

- Where each e_i is a subset of all the dimensions [d]
- Consider a graph with *n* nodes, with edge (i, j) if $e_i \cap e_j \neq \emptyset$
- Define the sparsity level of the problem:

$$\rho = \frac{\max_{1 \le i \le n} |\{e_j : e_i \cap e_j \ne \emptyset\}|}{n}$$

• A fact about sparsity:

$$\frac{1}{n} \le \rho \le 1$$

• We have the following improved bound for sparse problem:

Theorem 4. Define constant $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$. So long as $\frac{T}{\log T} > Cn$, with step size $\eta = \frac{8\log T}{T\mu}$, RANDOMSHUFFLE achieves convergence rate: $\mathbb{E}[||x_T - x^*||^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right)$.

• As a corollary, when $\rho = O\left(\frac{1}{n}\right)$, there is a $O\left(\frac{1}{T^2}\right)$ convergence rate!

• A fact about sparsity:

$$\frac{1}{n} \le \rho \le 1$$

• We have the following improved bound for sparse problem:

Theorem 4. Define constant $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$. So long as $\frac{T}{\log T} > Cn$, with step size $\eta = \frac{8\log T}{T\mu}$, RANDOMSHUFFLE achieves convergence rate: $\mathbb{E}[\|x_T - x^*\|^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right)$.

• As a corollary, when $\rho = O\left(\frac{1}{n}\right)$, there is a $O\left(\frac{1}{T^2}\right)$ convergence rate!

• A fact about sparsity:

$$\frac{1}{n} \le \rho \le 1$$

• We have the following improved bound for sparse problem:

Theorem 4. Define constant $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$. So long as $\frac{T}{\log T} > Cn$, with step size $\eta = \frac{8\log T}{T\mu}$, RANDOMSHUFFLE achieves convergence rate: $\mathbb{E}[\|x_T - x^*\|^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right)$.

• As a corollary, when $\rho = O\left(\frac{1}{n}\right)$, there is a $O\left(\frac{1}{T^2}\right)$ convergence rate!

Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

• When the variance vanishes at the optimality

 $f_i(x^*) = 0, \qquad \forall \ i$

- Given *n* pairs of numbers $0 \le \mu_i \le L_i$, a optimal solution $x^* \in \mathbb{R}^d$ and an initial upper bound on distance *R*
- A valid problem is defined as n functions and an initial point x_0 such that:
 - f_i is μ_i -strongly convex, L_i -Lipschitz continuous
 - $f_i'(x^*) = 0$
 - $\bullet \parallel x_0 x^* \parallel_2 \le R$

• When the variance vanishes at the optimality

$$f_i(x^*) = 0, \qquad \forall i$$

- Given *n* pairs of numbers $0 \le \mu_i \le L_i$, a optimal solution $x^* \in \mathbb{R}^d$ and an initial upper bound on distance *R*
- A valid problem is defined as n functions and an initial point x_0 such that:
 - f_i is μ_i -strongly convex, L_i -Lipschitz continuous
 - $f_i'(x^*) = 0$
 - $\bullet \parallel x_0 x^* \parallel_2 \le R$

• When the variance vanishes at the optimality

$$f_i(x^*) = 0, \qquad \forall i$$

- Given *n* pairs of numbers $0 \le \mu_i \le L_i$, a optimal solution $x^* \in \mathbb{R}^d$ and an initial upper bound on distance *R*
- A valid problem is defined as n functions and an initial point x_0 such that:
 - f_i is μ_i -strongly convex, L_i -Lipschitz continuous
 - $f_i'(x^*) = 0$
 - $\|x_0 x^*\|_2 \le R$

Theorem 5. Given constants $(\mu_1, L_1), \dots, (\mu_n, L_n)$ such that $0 \le \mu_i \le L_i$, a dimension d, a point $x^* \in \mathbb{R}^d$ and an upper bound of initial distance $||x_0 - x^*||_2 \le R$. Let \mathcal{P} be the set of valid problems. For step size $\gamma \le \min_i \{\frac{2}{L_i + \mu_i}\}$ and any $T \ge 1$, there is

$$\max_{P \in \mathcal{P}} \mathbb{E}\left[\left\| X_{RS} - x^* \right\|^2 \right] \le \max_{P \in \mathcal{P}} \mathbb{E}\left[\left\| X_{SGD} - x^* \right\|^2 \right]$$

Theorem 5. Given constants $(\mu_1, L_1), \dots, (\mu_n, L_n)$ such that $0 \le \mu_i \le L_i$, a dimension d, a point $x^* \in \mathbb{R}^d$ and an upper bound of initial distance $||x_0 - x^*||_2 \le R$. Let \mathcal{P} be the set of valid problems. For step size $\gamma \le \min_i \{\frac{2}{L_i + \mu_i}\}$ and any $T \ge 1$, there is

$$\max_{P \in \mathcal{P}} \mathbb{E}\left[\left\| X_{RS} - x^* \right\|^2 \right] \le \max_{P \in \mathcal{P}} \mathbb{E}\left[\left\| X_{SGD} - x^* \right\|^2 \right].$$

RandomShuffle is provably better than SGD after ANY number of iterations!

Thanks!