# RandomShuffle Beats SGD after Finite Epochs

Jeff HaoChen Suvrit Sra

Tsinghua University Massachusetts Institute of Technology

• Goal: to minimize the function

$$F(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

- SGD with replacement: (often appears in algorithm analysis)
  - $x_k = x_{k-1} \gamma \nabla f_{s(k)}(x_{k-1})$
  - s(k) uniformly random from  $[n], 1 \le k \le T$

• SGD without replacement: (often appears in reality)

• 
$$x_k^t = x_{k-1}^t - \gamma \nabla f_{\sigma_t(k)}(x_{k-1}^t)$$

•  $\sigma_t$  uniformly from random permutation of [n],  $1 \le k \le n$ 

- SGD with replacement: (often appears in algorithm analysis)
  - $x_k = x_{k-1} \gamma \nabla f_{s(k)}(x_{k-1})$
  - s(k) uniformly random from  $[n], 1 \le k \le T$

- SGD without replacement: (often appears in reality)
  - $x_k^t = x_{k-1}^t \gamma \nabla f_{\sigma_t(k)}(x_{k-1}^t)$
  - $\sigma_t$  uniformly from random permutation of [n],  $1 \le k \le n$

- SGD with replacement: (often appears in algorithm analysis)

  - s(k) uniformly random from  $[n], 1 \le k \le T$

- SGD without replacement: (often appears in reality)
  - $x_k^t = x_{k-1}^t \gamma \nabla f_{\sigma_t(k)}(x_{k-1}^t)$  We call this RandomShuffle
  - $\sigma_t$  uniformly from random permutation of [n],  $1 \le k \le n$

- So a natural question: which one is better?
- A Numerical Comparison: (*Bottou, 2009*)



SGD

RandomShuffle

- So a natural question: which one is better?
- A Numerical Comparison: (*Bottou, 2009*)



SGD

RandomShuffle

- Why?
- Intuitively, we should prefer RandomShuffle for the following two reasons:
  - It uses more "information" in one epoch (by visiting each component)
  - It has smaller variance for one epoch

• However, what is a rigorous proof?

- Why?
- Intuitively, we should prefer RandomShuffle for the following two reasons:
  - It uses more "information" in one epoch (by visiting each component)
  - It has smaller variance for one epoch

• However, what is a rigorous proof?

- Why?
- Intuitively, we should prefer RandomShuffle for the following two reasons:
  - It uses more "information" in one epoch (by visiting each component)
  - It has smaller variance for one epoch

• However, what is a rigorous proof?

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic:  $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$egin{aligned} & \left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\| \end{aligned}$$

• Which we still don't know how to prove yet 😁

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic:  $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$egin{aligned} & \left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^koldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^koldsymbol{A}_{i_j}
ight]
ight\| \end{aligned}$$

• Which we still don't know how to prove yet 😁

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic:  $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$\left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|$$

Which we still don't know how to prove yet <sup>(3)</sup>

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)
- Assume the problem is quadratic:  $f_i(x) = (a_i^T x y_i)^2$
- Then "RandomShuffle is better than SGD after one epoch" is true under conjecture:

$$\left\|\mathbb{E}_{ ext{wo}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|\leq \left\|\mathbb{E}_{ ext{wr}}\left[\prod_{j=1}^{k}oldsymbol{A}_{i_{k-j+1}}\prod_{j=1}^{k}oldsymbol{A}_{i_{j}}
ight]
ight\|$$

Which we still don't know how to prove yet ☺

- What about the more general situation?
- We can try to show with a better convergence bound!
  - The hope is: prove a faster worst-case convergence rate of RandomShuffle
- A well-known fact: SGD converges with rate  $O\left(\frac{1}{T}\right)$ :

• 
$$\mathbb{E}[\|x_T - x^*\|^2] \le O\left(\frac{1}{T}\right)$$

- What about the more general situation?
- We can try to show with a better convergence bound!
  - The hope is: prove a faster worst-case convergence rate of RandomShuffle
- A well-known fact: SGD converges with rate  $O\left(\frac{1}{T}\right)$ :

• 
$$\mathbb{E}[\|x_T - x^*\|^2] \le O\left(\frac{1}{T}\right)$$

- What about the more general situation?
- We can try to show with a better convergence bound!
  - The hope is: prove a faster worst-case convergence rate of RandomShuffle
- A well-known fact: SGD converges with rate  $O\left(\frac{1}{T}\right)$ :

• 
$$\mathbb{E}[\|x_T - x^*\|^2] \le O\left(\frac{1}{T}\right)$$

- One of the recent breakthrough: (Gürbüzbalaban, 2015)
  - Asymptotically RandomShuffle has convergence rate  $O\left(\frac{1}{\tau^2}\right)$
  - But not sure what happen after finite epochs
- In contrast, there is a non-asymptotic result: (Shamir, 2016)
  - RandomShuffle is **no worse** than SGD, with provably  $O\left(\frac{1}{T}\right)$  convergence rate
  - But cannot show that RandomShuffle is really faster

- One of the recent breakthrough: (Gürbüzbalaban, 2015)
  - Asymptotically RandomShuffle has convergence rate  $O\left(\frac{1}{\tau^2}\right)$
  - But not sure what happen after finite epochs
- In contrast, there is a non-asymptotic result: (Shamir, 2016)
  - RandomShuffle is **no worse** than SGD, with provably  $O\left(\frac{1}{T}\right)$  convergence rate
  - But cannot show that RandomShuffle is really faster

- One of the recent breakthrough: (Gürbüzbalaban, 2015)
  - Asymptotically RandomShuffle has convergence rate  $O\left(\frac{1}{\tau^2}\right)$
  - But not sure what happen after finite epochs
- In contrast, there is a non-asymptotic result: (Shamir, 2016)
  - RandomShuffle is **no worse** than SGD, with provably  $O\left(\frac{1}{\tau}\right)$  convergence rate
  - But cannot show that RandomShuffle is really faster

What happens in between?

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

Dheeraj Nagaraj et el. get rid of this constraint

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

this talk

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

## First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than  $O\left(\frac{1}{\tau}\right)$ ? E.g.,  $O\left(\frac{1}{\tau^{1+\delta}}\right)$ ?
- If we can, then everything is solved  $\bigcirc$
- .....unless we cannot  $\ensuremath{\mathfrak{S}}$

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.

## First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than  $O\left(\frac{1}{\tau}\right)$ ? E.g.,  $O\left(\frac{1}{\tau^{1+\delta}}\right)$ ?
- If we can, then everything is solved S
- .....unless we cannot  $\ensuremath{\mathfrak{S}}$

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.

# First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than  $O\left(\frac{1}{T}\right)$ ? E.g.,  $O\left(\frac{1}{T^{1+\delta}}\right)$ ?
- If we can, then everything is solved S
- .....unless we cannot ⊗

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.

- We only consider the case when T = n, i.e., we run one epoch of the algorithm
- We prove the theorem with a counter-example:

• Recall function 
$$F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

• We set 
$$f_i(x) = \begin{cases} \frac{1}{2}(x-b)'A(x-b), & i \text{ odd,} \\ \frac{1}{2}(x+b)'A(x+b), & i \text{ even.} \end{cases}$$

• A and b to be determined later...

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.

- We only consider the case when T = n, i.e., we run one epoch of the algorithm
- We prove the theorem with a counter-example:
  - Recall function  $F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$

• We set 
$$f_i(x) = \begin{cases} \frac{1}{2}(x-b)'A(x-b), & i \text{ odd,} \\ \frac{1}{2}(x+b)'A(x+b), & i \text{ even.} \end{cases}$$

• A and b to be determined later...

• Step 1: Calculate the error

• 
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

• 
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
,  $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[ \left[ \sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \right]$ 

- Step 3: Construct a contradiction
  - For contradiction, assume there is  $\gamma$  dependent on T achieving convergence  $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

• Step 1: Calculate the error

• 
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

• 
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
,  $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[ \sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2$ 

- Step 3: Construct a contradiction
  - For contradiction, assume there is  $\gamma$  dependent on T achieving convergence  $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

• Step 1: Calculate the error

• 
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

• 
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
,  $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[ \left[ \sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \right]$ 

- Step 3: Construct a contradiction
  - For contradiction, assume there is  $\gamma$  dependent on T achieving convergence  $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

• Step 1: Calculate the error

• 
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

• 
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
,  $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[ \left[ \sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \right]$ 

- Step 3: Construct a contradiction
  - For contradiction, assume there is  $\gamma$  dependent on T achieving convergence  $o\left(\frac{1}{\tau}\right)$

• Step 1: Calculate the error

• 
$$\mathbb{E}\left[\left|\left|x_{T}-x^{*}\right|\right|^{2}\right] = \left|\left|\left(I-\gamma A\right)^{T}\left(x_{0}-x^{*}\right)\right|\right|^{2} + \mathbb{E}\left[\left|\left|\sum_{t=1}^{T}\left(-1\right)^{\sigma(t)}\gamma\left(I-\gamma A\right)^{T-t}Ab\right|\right|^{2}\right]\right]$$

$$P$$

$$Q$$

• Step 2: Simplify via eigenvector basis decomposition

• 
$$P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2$$
,  $Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[ \sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2$ 

- Step 3: Construct a contradiction
  - For contradiction, assume there is  $\gamma$  dependent on T achieving convergence  $o\left(\frac{1}{\tau}\right)$

$$\implies \qquad \frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$

Cannot be true for different  $\lambda_i$ !

## What to do next?

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.



What happens in between?

- Key step: introduce *n* into the bound
  - The hope is if we can show bound like  $O\left(\frac{n}{T^2}\right)$ , RandomShuffle behaves better  $\bigcirc$

## What to do next?

**Theorem 3.** Given the information of  $\mu$ , L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate o  $\left(\frac{1}{T}\right)$  for any  $T \ge n$ , if we do not allow n to appear in the bound.



What happens in between?

- Key step: introduce *n* into the bound
  - The hope is if we can show bound like  $O\left(\frac{n}{T^2}\right)$ , RandomShuffle behaves better S

### Bounds dependent on *n*

For general second order differentiable functions with Lipschitz Hessian:

**Theorem 2.** Define constant  $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$ . So long as  $\frac{T}{\log T} > Cn$ , with step size  $\eta = \frac{8\log T}{T\mu}$ , RANDOMSHUFFLE achieves convergence rate:  $\mathbb{E}[\|x_T - x^*\|^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right).$ 

# Bounds dependent on *n*

• On one hand, RandomShuffle converges with

$$O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right)$$

• On the other hand, SGD converges with

$$O\left(\frac{1}{T}\right)$$

• So the take away is:

RandomShuffle is provably better than SGD after  $O(\sqrt{n})$  epochs!

# Bounds dependent on *n*

• On one hand, RandomShuffle converges with

$$O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right)$$

• On the other hand, SGD converges with

$$O\left(\frac{1}{T}\right)$$

• So the take away is:

RandomShuffle is provably better than SGD after  $O(\sqrt{n})$  epochs!

# Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

• A sparse problem can be written as:

$$F(x) = \sum_{i=1}^{n} f_i(x_{e_i})$$

- Where each  $e_i$  is a subset of all the dimensions [d]
- Consider a graph with *n* nodes, with edge (i, j) if  $e_i \cap e_i \neq \emptyset$
- Define the sparsity level of the problem:

$$\rho = \frac{\max_{1 \le i \le n} |\{e_j : e_i \cap e_j \ne \emptyset\}|}{n}$$

• A sparse problem can be written as:

$$F(x) = \sum_{i=1}^{n} f_i(x_{e_i})$$

- Where each  $e_i$  is a subset of all the dimensions [d]
- Consider a graph with *n* nodes, with edge (i, j) if  $e_i \cap e_j \neq \emptyset$
- Define the sparsity level of the problem:

$$\rho = \frac{\max_{1 \le i \le n} |\{e_j : e_i \cap e_j \ne \emptyset\}|}{n}$$

• A fact about sparsity:

$$\frac{1}{n} \le \rho \le 1$$

• We have the following improved bound for sparse problem:

**Theorem 4.** Define constant  $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$ . So long as  $\frac{T}{\log T} > Cn$ , with step size  $\eta = \frac{8\log T}{T\mu}$ , RANDOMSHUFFLE achieves convergence rate:  $\mathbb{E}[||x_T - x^*||^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right)$ .

• As a corollary, when  $\rho = O\left(\frac{1}{n}\right)$ , there is a  $O\left(\frac{1}{T^2}\right)$  convergence rate!

• A fact about sparsity:

$$\frac{1}{n} \le \rho \le 1$$

• We have the following improved bound for sparse problem:

**Theorem 4.** Define constant  $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$ . So long as  $\frac{T}{\log T} > Cn$ , with step size  $\eta = \frac{8\log T}{T\mu}$ , RANDOMSHUFFLE achieves convergence rate:  $\mathbb{E}[\|x_T - x^*\|^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right)$ .

• As a corollary, when  $\rho = O\left(\frac{1}{n}\right)$ , there is a  $O\left(\frac{1}{T^2}\right)$  convergence rate!

• A fact about sparsity:

$$\frac{1}{n} \le \rho \le 1$$

• We have the following improved bound for sparse problem:

**Theorem 4.** Define constant  $C = \max\left\{\frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu})\right\}$ . So long as  $\frac{T}{\log T} > Cn$ , with step size  $\eta = \frac{8\log T}{T\mu}$ , RANDOMSHUFFLE achieves convergence rate:  $\mathbb{E}[\|x_T - x^*\|^2] \leq \mathcal{O}\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right)$ .

• As a corollary, when  $\rho = O\left(\frac{1}{n}\right)$ , there is a  $O\left(\frac{1}{T^2}\right)$  convergence rate!

# Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

• When the variance vanishes at the optimality

 $f_i(x^*) = 0, \qquad \forall \ i$ 

- Given *n* pairs of numbers  $0 \le \mu_i \le L_i$ , a optimal solution  $x^* \in \mathbb{R}^d$  and an initial upper bound on distance *R*
- A valid problem is defined as n functions and an initial point  $x_0$  such that:
  - $f_i$  is  $\mu_i$ -strongly convex,  $L_i$ -Lipschitz continuous
  - $f_i'(x^*) = 0$
  - $\bullet \parallel x_0 x^* \parallel_2 \le R$

• When the variance vanishes at the optimality

$$f_i(x^*) = 0, \qquad \forall i$$

- Given *n* pairs of numbers  $0 \le \mu_i \le L_i$ , a optimal solution  $x^* \in \mathbb{R}^d$  and an initial upper bound on distance *R*
- A valid problem is defined as n functions and an initial point  $x_0$  such that:
  - $f_i$  is  $\mu_i$ -strongly convex,  $L_i$ -Lipschitz continuous
  - $f_i'(x^*) = 0$
  - $\bullet \parallel x_0 x^* \parallel_2 \le R$

• When the variance vanishes at the optimality

$$f_i(x^*) = 0, \qquad \forall i$$

- Given *n* pairs of numbers  $0 \le \mu_i \le L_i$ , a optimal solution  $x^* \in \mathbb{R}^d$  and an initial upper bound on distance *R*
- A valid problem is defined as n functions and an initial point  $x_0$  such that:
  - $f_i$  is  $\mu_i$ -strongly convex,  $L_i$ -Lipschitz continuous
  - $f_i'(x^*) = 0$
  - $\|x_0 x^*\|_2 \le R$

**Theorem 5.** Given constants  $(\mu_1, L_1), \dots, (\mu_n, L_n)$  such that  $0 \le \mu_i \le L_i$ , a dimension d, a point  $x^* \in \mathbb{R}^d$  and an upper bound of initial distance  $||x_0 - x^*||_2 \le R$ . Let  $\mathcal{P}$  be the set of valid problems. For step size  $\gamma \le \min_i \{\frac{2}{L_i + \mu_i}\}$ and any  $T \ge 1$ , there is

$$\max_{P \in \mathcal{P}} \mathbb{E}\left[ \left\| X_{RS} - x^* \right\|^2 \right] \le \max_{P \in \mathcal{P}} \mathbb{E}\left[ \left\| X_{SGD} - x^* \right\|^2 \right]$$

**Theorem 5.** Given constants  $(\mu_1, L_1), \dots, (\mu_n, L_n)$  such that  $0 \le \mu_i \le L_i$ , a dimension d, a point  $x^* \in \mathbb{R}^d$  and an upper bound of initial distance  $||x_0 - x^*||_2 \le R$ . Let  $\mathcal{P}$  be the set of valid problems. For step size  $\gamma \le \min_i \{\frac{2}{L_i + \mu_i}\}$ and any  $T \ge 1$ , there is

$$\max_{P \in \mathcal{P}} \mathbb{E}\left[ \left\| X_{RS} - x^* \right\|^2 \right] \le \max_{P \in \mathcal{P}} \mathbb{E}\left[ \left\| X_{SGD} - x^* \right\|^2 \right].$$

RandomShuffle is provably better than SGD after ANY number of iterations!

### Thanks!