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Introduction

• Goal: to minimize the function



• SGD with replacement: (often appears in algorithm analysis)

• !" = !"$% − '∇)* " (!"$%)

• -(.) uniformly random from [0], 1 ≤ . ≤ 4

• SGD without replacement: (often appears in reality)

• !"5 = !"$%5 − '∇)67 " (!"$%5 )

• 85 uniformly from random permutation of [0], 1 ≤ . ≤ 0
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We call this SGD

We call this RandomShuffle



• So a natural question: which one is better?

• A Numerical Comparison: (Bottou, 2009)
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Introduction

• Why?

• Intuitively, we should prefer RandomShuffle for the following two reasons:

• It uses more “information” in one epoch (by visiting each component)

• It has smaller variance for one epoch

• However, what is a rigorous proof?
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A Brief History
• Under strong structure, we can convert this problem into matrix inequality: 

(Recht and Ré, 2012)

• Assume the problem is quadratic:  !" # = (&"'# − )")+

• Then “RandomShuffle is better than SGD after one epoch” is true under 
conjecture:

• Which we still don’t know how to prove yet L
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A Brief History

• What about the more general situation?

• We can try to show with a better convergence bound!

• The hope is: prove a faster worst-case convergence rate of RandomShuffle

• A well-known fact: SGD converges with rate ! "
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A Brief History
• One of the recent breakthrough: (Gürbüzbalaban, 2015) 

• Asymptotically RandomShuffle has convergence rate ! "
#$

• But not sure what happen after finite epochs

• In contrast, there is a non-asymptotic result: (Shamir, 2016)

• RandomShuffle is no worse than SGD, with provably ! "
# convergence rate

• But cannot show that RandomShuffle is really faster



A Brief History
• One of the recent breakthrough: (Gürbüzbalaban, 2015) 

• Asymptotically RandomShuffle has convergence rate ! "
#$

• But not sure what happen after finite epochs

• In contrast, there is a non-asymptotic result: (Shamir, 2016)

• RandomShuffle is no worse than SGD, with provably ! "
# convergence rate

• But cannot show that RandomShuffle is really faster



A Brief History
• One of the recent breakthrough: (Gürbüzbalaban, 2015) 

• Asymptotically RandomShuffle has convergence rate ! "
#$

• But not sure what happen after finite epochs

• In contrast, there is a non-asymptotic result: (Shamir, 2016)

• RandomShuffle is no worse than SGD, with provably ! "
# convergence rate

• But cannot show that RandomShuffle is really faster

What happens in between?
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We analyze RandomShuffle in the following settings:

• Strongly convex, Lipschitz Hessian

• Sparse data

• Vanishing variance 

• Nonconvex, under PL condition

• Smooth convex
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# ? E.g., ! "
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• If we can, then everything is solved J

• ……unless we cannot L
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Proof of the theorem

• We only consider the case when ! = #, i.e., we run one epoch of the algorithm 

• We prove the theorem with a counter-example:

• Recall function $ % = &
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• We set +) % = ,
&
- % − / 01 % − / , 3 455,
&
- % + / 01 % + / , 3 787#.

• A and b to be determined later…
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Proof of the theorem
• Step 1: Calculate the error 

• ! "# − "∗
& = I − )* + x- − x∗

&
+ ! ∑012# −1 4 0 ) 5 − )* #60*7

&

• Step 2: Simplify via eigenvector basis decomposition

• 8 = ∑912: 1 − );9 &#<9& , > = )& ∑912: ?9&;9&! ∑012# −1 4 0 1 − );9 #60 &

• Step 3: Construct a contradiction

• For contradiction, assume there is ) dependent on @ achieving convergence A 2
#
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2 − );9

= 1
;9
+ A(1)⟹



Proof of the theorem
• Step 1: Calculate the error 

• ! "# − "∗
& = I − )* + x- − x∗

&
+ ! ∑012# −1 4 0 ) 5 − )* #60*7

&

• Step 2: Simplify via eigenvector basis decomposition

• 8 = ∑912: 1 − );9 &#<9& , > = )& ∑912: ?9&;9&! ∑012# −1 4 0 1 − );9 #60 &

• Step 3: Construct a contradiction

• For contradiction, assume there is ) dependent on @ achieving convergence A 2
#

P Q

)@
2 − );9

= 1
;9
+ A(1)⟹



Proof of the theorem
• Step 1: Calculate the error 

• ! "# − "∗
& = I − )* + x- − x∗

&
+ ! ∑012# −1 4 0 ) 5 − )* #60*7

&

• Step 2: Simplify via eigenvector basis decomposition

• 8 = ∑912: 1 − );9 &#<9& , > = )& ∑912: ?9&;9&! ∑012# −1 4 0 1 − );9 #60 &

• Step 3: Construct a contradiction

• For contradiction, assume there is ) dependent on @ achieving convergence A 2
#

P Q

)@
2 − );9

= 1
;9
+ A(1)⟹



Proof of the theorem
• Step 1: Calculate the error 

• ! "# − "∗
& = I − )* + x- − x∗

&
+ ! ∑012# −1 4 0 ) 5 − )* #60*7

&

• Step 2: Simplify via eigenvector basis decomposition

• 8 = ∑912: 1 − );9 &#<9& , > = )& ∑912: ?9&;9&! ∑012# −1 4 0 1 − );9 #60 &

• Step 3: Construct a contradiction

• For contradiction, assume there is ) dependent on @ achieving convergence A 2
#

P Q

)@
2 − );9

= 1
;9
+ A(1)⟹



Proof of the theorem
• Step 1: Calculate the error 

• ! "# − "∗
& = I − )* + x- − x∗

&
+ ! ∑012# −1 4 0 ) 5 − )* #60*7

&

• Step 2: Simplify via eigenvector basis decomposition

• 8 = ∑912: 1 − );9 &#<9& , > = )& ∑912: ?9&;9&! ∑012# −1 4 0 1 − );9 #60 &

• Step 3: Construct a contradiction

• For contradiction, assume there is ) dependent on @ achieving convergence A 2
#

P Q

)@
2 − );9

= 1
;9
+ A(1)⟹ Cannot be true for different ;9!



What to do next?

• This means the best non-asymptotic rate we can hope is ! "
#

• Key step: introduce $ into the bound

• The hope is if we can show bound like ! %
#& , RandomShuffle behaves betterJ

Long Time: ! "
#&Short Time: ! "

#

What happens in between?
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Bounds dependent on !

For general second order differentiable functions with Lipschitz Hessian:



Bounds dependent on !
• On one hand, RandomShuffle converges with

• On the other hand, SGD converges with

• So the take away is:

" 1
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RandomShuffle is provably better than SGD after " ' epochs!
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Sparse setting
• A sparse problem can be written as:

! " =$
%&'

(
)%("+,)

• Where each .% is a subset of all the dimensions [0]
• Consider a graph with 2 nodes, with edge (3, 5) if .% ∩ .7 ≠ ∅
• Define the sparsity level of the problem:

: =
max
'>%>(

|{.7 ∶ .% ∩ .7 ≠ ∅}|
2
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When Variance Vanishes
• When the variance vanishes at the optimality

!" #∗ = 0, ∀ )
• Given * pairs of numbers 0 ≤ ," ≤ -", a optimal solution #∗ ∈ ℝ0 and an 

initial upper bound on distance 1
• A valid problem is defined as * functions and an initial point #2 such that:

• !" is ,"-strongly convex, -"-Lipschitz continuous

• !"3 #∗ = 0
• ∥ #2 − #∗ ∥6 ≤ 1
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When Variance Vanishes

RandomShuffle is provably better than SGD after ANY number of iterations!



Thanks!


