A Dynamical Systems Perspective on Nesterov Acceleration

Michael Muehlebach and Michael I. Jordan

UC Berkeley

Michael Muehlebach and Michael I. Jordan

A D A A B A A B A A B A

= nar

Introduction

- Find $x^* \in \mathbb{R}^n$ such that $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$, where f is smooth and convex.
- Focus on the case where f is strongly convex, i.e. f is convex and satisfies, for any $\bar{x} \in \mathbb{R}^n$,

$$f(x) \ge f(\bar{x}) + \nabla f(\bar{x})(x - \bar{x}) + \frac{L}{2\kappa} |x - \bar{x}|^2, \quad \forall x \in \mathbb{R}^n.$$

- L > 0 is the Lipschitz constant of the gradient.
- $\kappa \geq 1$ is the condition number.

Dynamical Systems Perspective

• Consider the ordinary differential equation (ODE)

$$\ddot{x}(t) + 2d\dot{x}(t) + \frac{1}{L}\nabla f(x(t) + \beta \dot{x}(t)) = 0, \quad \text{with}$$

 $d := \frac{1}{\sqrt{\kappa} + 1}, \quad \beta := \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}.$

ヘロト ヘアト ヘビト ヘビト

∃ 900

$$\dot{q}(t) = p(t), \quad \dot{p}(t) = -\frac{1}{L}\nabla f(q(t)) + f_{\mathsf{NP}}(q(t), p(t)),$$

where

$$H(q,p) := \frac{1}{2} |p|^2 + \frac{1}{L} f(q), \quad f_{\mathsf{NP}}(q,p) := -2dp - \frac{1}{L} (\nabla f(q+\beta p) - \nabla f(q)).$$

Michael Muehlebach and Michael I. Jordan

Damping

• The non-potential forces can be rewritten as

f(x)

Convergence

- Asymptotic stability (through dissipation).
- Convergence rate (upper bound, stated for p(0) = 0)

$$f(q(t)) \leq 2(f(q(0)) - f^*) \exp(-1/(2\sqrt{\kappa})t), \quad \forall t \in [0,\infty).$$

- Convergence rate of $\mathcal{O}(1/t^2)$ in the non-strongly convex case.
- Derivation is based on the following Lyapunov-like function (stated for $x^* = f(x^*) = 0$)

$$V(t) = \frac{1}{2}|aq(t) + p(t)|^2 + \frac{1}{L}f(q(t)).$$

Discretization

• Semi-implicit Euler discretization (with time step $T_s = 1$) leads to the accelerated gradient method

$$q_{k+1} = q_k + T_{\mathsf{S}} p_{k+1}, \quad p_{k+1} = p_k + T_{\mathsf{S}} (-\nabla f(q_k) - f_{\mathsf{NP}}(q_k, p_k)).$$

- What are the properties that are preserved through the discretization?
 - ▶ phase-space area contraction rate (contraction for $T_s \in (0,2)$)
 - time-reversibility (for $T_s \in (0,1)$)
 - \Rightarrow yields a worst-case bound on the convergence rate
 - convergence rate (for $T_s \in (0, 1]$)

Conclusion and Outlook

• We derived a dynamical system model for the accelerated gradient method.

- The dynamics have an interpretation as mass-spring-damper system.
- Discretization yields the accelerated gradient method.
- Certain key properties are preserved through the discretization.
- Is a symplectic discretization the "right" discretization?
 - The behavior for large κ seems particularly important.

• Come to visit me at Poster 205.

э.

A D A A B A A B A A B A