Blended Conditional Gradients:

The unconditioning of conditional gradients

Joint work with Gabor Braun, Sebastian Pokutta, Steve Wright

Dan Tu

CONDITIONAL GRADIENTS: PROJECTION-FREE

Given a polytope P, solve the optimization problem:

 $\min f(x) \qquad \text{ s.t. } x \in P$

where the objective function f is smooth and strongly convex

Frank-Wolfe Algorithm

- 1: **Input:** initial point $x_0 \in P$, convex function *f*
- 2: **for** t = 1 to T **do**

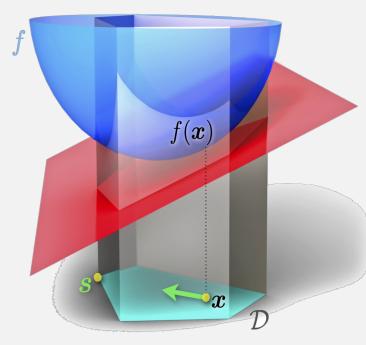
3:
$$s_{t+1} = \operatorname{argmin}_{s \in P} \nabla f(x_t)^{\mathsf{T}} s$$

4:
$$x_{t+1} = (1-\gamma)x_t + \gamma s_{t+1}$$

5: **end for**

Find a vertex through LP Oracle.

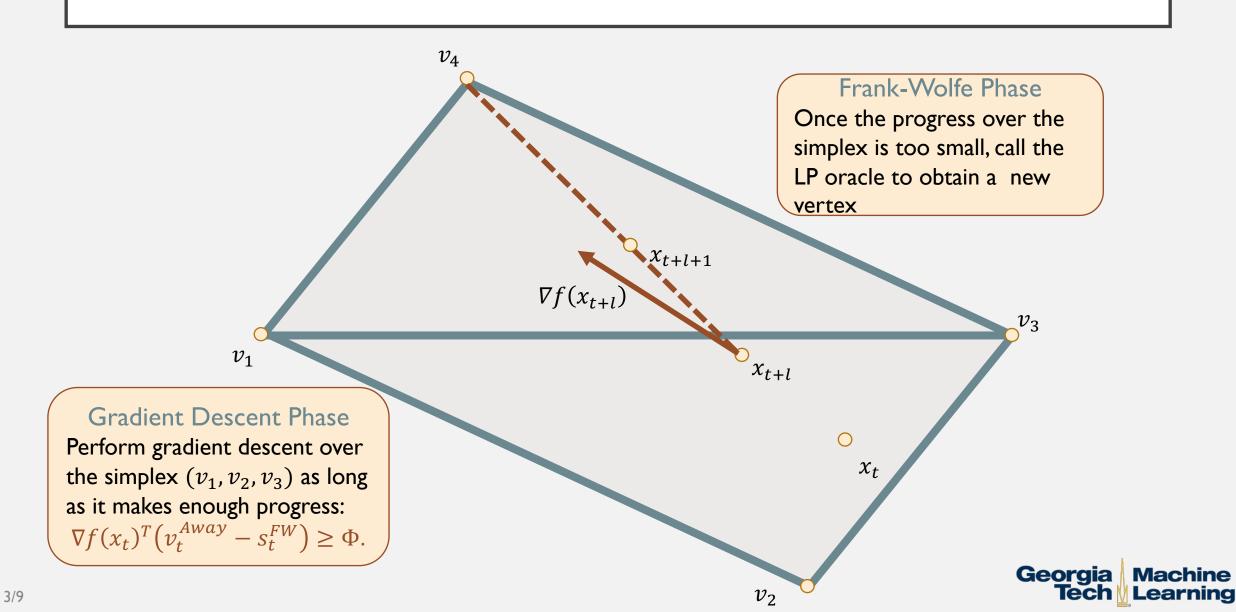
Walk along the conditional gradient direction.



Problems:

- LP Oracle can be computationally expensive.
- The conditional gradient direction, as an approximation of the negative gradient, can be inefficient.

BLENDED CONDITIONAL GRADIENT



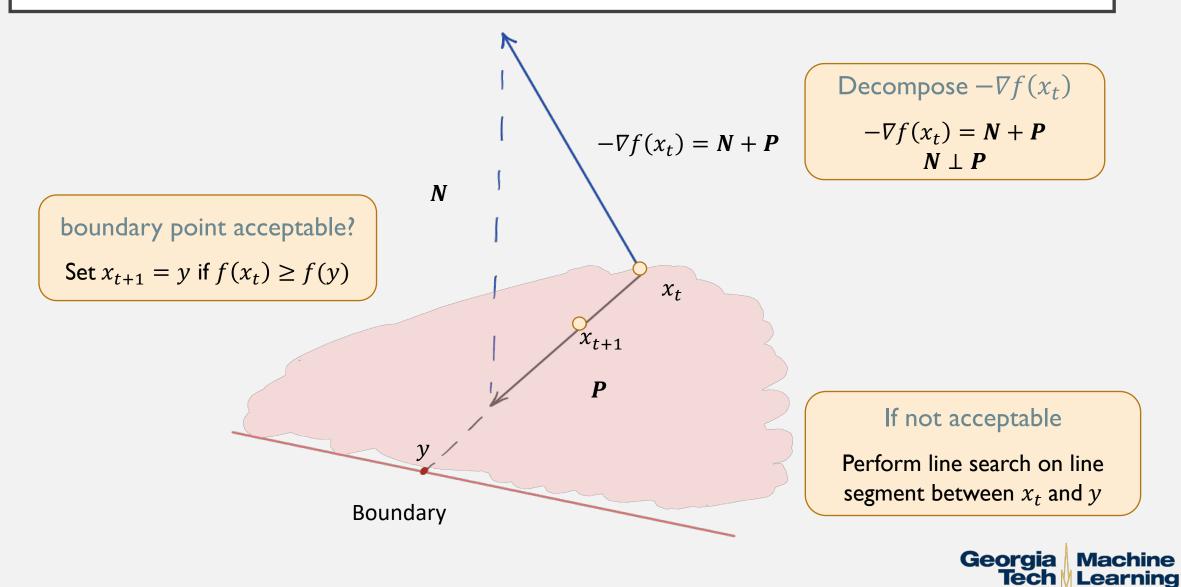
GRADIENT DESCENT PHASE SIMPLEX GRADIENT DESCENT ORACLE

For a general simplex, decompose x as a convex combination

$$x = \sum_{i=1}^{t} \lambda_i v_i$$
, with $\sum_{i=1}^{t} \lambda_i = 1$ and $\lambda_i \ge 0, i = 1, 2, \dots, t$

Treat λ_i as variables $\rightarrow x$ in a standard simplex with normal vector: $N = (1, 1, ..., 1)/\sqrt{t}$

GRADIENT DESCENT PHASE SIMPLEX GRADIENT DESCENT ORACLE



BCG ALGORITHM

Algorithm Blended Conditional Gradients (BCG)

Require: smooth convex function *f*, start vertex $x_0 \in P$, weak separation oracle LPsep_{*P*}, accuracy $K \ge 1$ **Ensure:** points x_t in *P* for t = 1, ..., T1: $\Phi_0 \leftarrow \max_{v \in P} \nabla f(x_0) (x_0 - v)/2$ {Initial dual gap estimate} 2: $S_0 \leftarrow \{x_0\}$ 3: for t = 0 to T - 1 do 4: $v_t^A \leftarrow \operatorname{argmax}_{v \in S_t} \nabla f(x_t) v$ 5: $v_t^{FW-S} \leftarrow \operatorname{argmin}_{v \in S_t} \nabla f(x_t) v$ 6: **if** $\nabla f(x_t)(v_t^A - v_t^{FW-S}) \ge \Phi_t$ **then** Gradient Descent Phase $x_{t+1}, S_{t+1} \leftarrow \text{Simplex Gradient Descent}(x_t, S_t)$ 7: 8: $\Phi_{t+1} \leftarrow \Phi_t$ else 9: $v_t \leftarrow \text{LPsep}_p(\nabla f(x_t), x_t, \Phi_t, K)$ 10: if v_t = false then 11: 12: $x_{t+1} \leftarrow x_t$ $\Phi_{t+1} \leftarrow \Phi_t/2$ {update dual gap estimate} 13: Frank-Wolfe Phase $S_{t+1} \leftarrow S_t$ 14:else 15: 16: $x_{t+1} \leftarrow \operatorname{argmin}_{x \in [x_t, v_t]} f(x)$ Choose $S_{t+1} \subseteq S_t \cup \{v_t\}$ minimal such that $x_{t+1} \in S_{t+1}$. 17: 18: $\Phi_{t+1} \leftarrow \Phi_t$ 19: end if end if 20: 21: end for Georgia Machine

Tech 🛛 Learning

COMPUTATIONAL RESULTS

BCG outperforms several recent variants of Frank-Wolfe algorithm

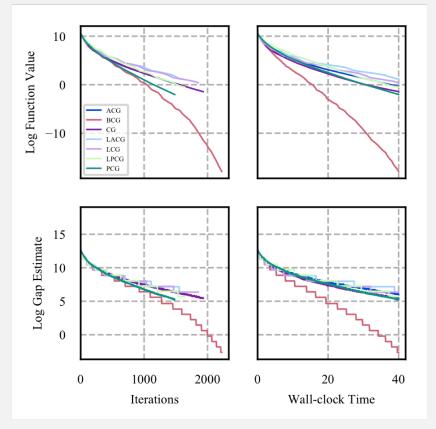


Fig 1: Lasso Regression

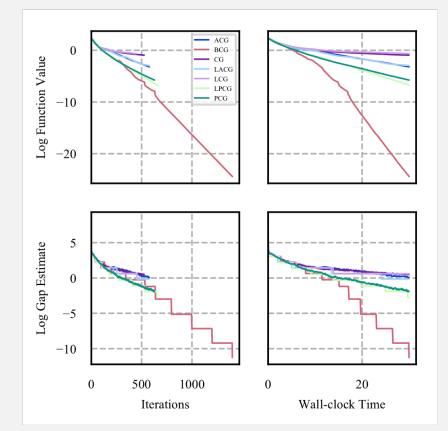


Fig 2: Sparse Signal Recovery

Georgia Tech

Machine Learning

CONVERGENCE

Theorem

If f is a strongly convex and smooth function over the polytope P with geometric strong convexity μ and simplicial curvature, then BCG algorithm ensures $f(x_t) - f(x^*) \le \epsilon$ for some T that satisfies:

$$T \leq \left[\log\frac{2\Phi_0}{\epsilon}\right] + 8\left[\log\frac{\Phi_0}{2C^{\Delta}}\right] + \frac{64C^{\Delta}}{\mu}\left[\log\frac{4C^{\Delta}}{\epsilon}\right] = O\left(\frac{C^{\Delta}}{\mu}\log\frac{\Phi_0}{\epsilon}\right)$$

THANKS!

