HIRING UNDER UNCERTAINTY

Manish Raghavan
Cornell University

Sreenivas Gollapudi Manish Purohit Google Research

Google Research

EVERY BUSINESS HAS HIRING PROBLEMS!

- Lots of candidates
- Few openings
- Uncertainty
- Candidates can reject an offer!
- Should I make an offer to the best candidates?
- What if they reject?
- I need to fill positions fast!

Thank You.
But I already have
a better offer.

MODEL AND PROBLEM DEFINITION

- Candidates 1, 2, ... n
- Each candidate i has
- Value v_{i}
- Probability of acceptance p_{i}
- Deadline T
- Must fill all positions by deadline
- k openings
- Cannot rescind an offer once accepted

Q: In what order should one make offers to maximize the total expected value of hired candidates?

SEOUENTIAL HIRING

- Make offers one at a time
- It takes one time step to make an offer and receive a response
- Example

$$
\begin{array}{cccc}
\hline & 0 & 0 & 0 \\
20 & 10 & 10 & 10 \\
\hline 0.1 & 0.5 & 0.5 & 1 \\
\hline
\end{array}
$$

$$
k=2, t=2
$$

SEQUENTIAL HIRING

- Optimal solution is adaptive!

v_{i}	20	10	10	10
p_{i}	0.1	0.5	0.5	1
$k=2, t=2$				

SEQUENTIAL HIRING

- Optimal solution is adaptive!

v_{i}	20	10	10	10
p_{i}	0.1	0.5	0.5	1

- Solution Value:

$$
15=\quad \begin{gathered}
0.5 *(10+10) \\
+ \\
0.5 *(0+10)
\end{gathered}
$$

10
10
10

MAIN RESULTS

- Hiring a single candidate
- Optimal solution via dynamic programming
- Hiring $k>1$ candidates
- Study the adaptivity gap
- How much does an algorithm lose by considering only nonadaptive solutions?
- Design a 2-approximation algorithm

EXTENSIONS

- Making Parallel Offers
- If k^{\prime} slots are available, then make up to k^{\prime} offers at once
- Design an 8-approximation algorithm
- Knapsack Hiring
- Each candidate also has a size s_{i}
- The firm has a budget B
- Total size of hired candidates must be at most B
- Design a 10-approximation algorithm

THANKS!

