Submodular Cost Submodular Cover with an Approximate Oracle

Victoria G. Crawford¹, Alan Kuhnle², My T. Thai¹

¹University of Florida

²Florida State University

Submodular Cost Submodular Cover (SCSC)

Definition (Submodular Cost Submodular Cover (SCSC))

Let $f, c: 2^S \to \mathbb{R}_{\geq 0}$ be monotone submodular functions defined on subsets of a ground set S of size n. Given threshold $\tau \leq f(S)$, SCSC is to find

 $\operatorname{argmin} \{ c(X) | X \subseteq S, f(X) \geq \tau \}.$

- SCSC arises in many applications
 - Influence in a social network
 - Data summarization
- NP-hard

The greedy algorithm has an approximation ratio of

$$\rho\left(\ln\left(\frac{\alpha}{\beta}\right)+1\right)$$

(Soma & Yoshida 2015).

Algorithm 1: greedy(f, c, τ) $f_{\tau} = \min\{f, \tau\}$ $i = 0, A_i = \emptyset$;while $f(A_i) < \tau$ do $u = \operatorname{argmax}_{x \in S \setminus A_i} \frac{\Delta f_{\tau}(A_i, x)}{c(x)}$; $i = i + 1, A_i = A_{i-1} \cup \{u\}$;end whilereturn A_i

Approximate Oracle

- We analyse the greedy algorithm for SCSC given an approximate oracle to *f*
 - Sketch of f
 - Noisy evaluations of f

Definition (ϵ -Approximate Oracle) A function $F : 2^S \to \mathbb{R}_{\geq 0}$ is ϵ -approximate to $f : 2^S \to \mathbb{R}_{\geq 0}$ if for all $X \subseteq S$, $|f(X) - F(X)| < \epsilon$.

Approximate Oracle

• F is not necessarily monotone submodular

Existing guarantees don't hold

Approximation Ratios

Theorem

Let A be the set returned by the greedy algorithm with a value oracle to ϵ -approximate oracle F. Then $f(A) \geq \tau - \epsilon$. And if $\mu > 4\epsilon c_{\max} \rho/c_{\min}$,

$$c(A) \leq rac{
ho}{1 - rac{4\epsilon c_{max}
ho}{c_{min}\mu}} \left(\ln\left(rac{lpha}{eta}
ight) + 2
ight) c(A^*).$$

- If $\epsilon = 0$, nearly reduces to existing result; $\rho\left(\ln\left(\frac{\alpha}{\beta}\right) + 1\right)$ (Soma & Yoshida 2015)
- β can be very small

Approximation Ratios

Theorem

Let A be the set returned by the greedy algorithm with a value oracle to ϵ -approximate oracle F. Then $f(A) \geq \tau - \epsilon$. And if $\mu > 4\epsilon c_{\max} \rho/c_{\min}$, then for any $\gamma \in (0, 1 - 4\epsilon c_{\max} \rho/c_{\min} \mu)$,

$$c(A) \leq rac{
ho}{1 - rac{4\epsilon c_{max}
ho}{c_{min}\mu} - \gamma} \left(\ln\left(rac{nlpha
ho}{\gamma \mu}
ight) + 2
ight) c(A^*).$$

- No more β
- Incomparable

Application: Influence Threshold

- \bullet Find seed set of minimum cost such that expected propagation from seed set is at least τ
- Scalable influence estimator of Cohen et al. (2014)
 - Not submodular
 - ε-approximate
- Computed our approximation ratios

Thank you! Poster #168