

Submodular Observation Selection and Information Gathering for Quadratic Models

Abolfazl Hashemi*, Mahsa Ghasemi, Haris Vikalo, and Ufuk Topcu

ICML, Wednesday June 12, 2019

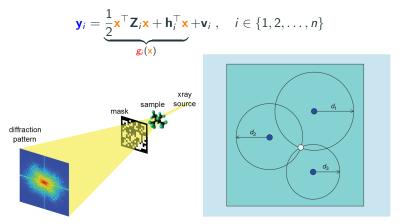
Observation Selection and Information Gathering

- Resource-constrained inference problems
 - Target tracking, experimental design, sensor networks
- Access to expensive / limited observations
 - $\circ~$ Communication cost, power consumption, computational burden

Goal Cost-effectively identify the most useful subset of information

Observation Selection for Quadratic Models

• Quadratic relation between observations and unknown parameters



(a) Phase retrieval: $y_i = \frac{1}{2} \mathbf{x}^* (\mathbf{z}_i \mathbf{z}_i^*) \mathbf{x} + v_i$ (b) Localization: $\mathbf{y}_i = \frac{1}{2} ||\mathbf{h}_i - \mathbf{x}||_2^2 + \mathbf{v}_i$ (Figures from [Candes'15] and [Gezici'05])

- Challenge: Unknown optimal estimator and error covariance matrix
- Locally-optimal observation selection [Flaherty'06, Krause'08]: Linearize around a guess x_{0}

$$\hat{y}_i := y_i - g_i(\mathbf{x}_0) \approx \nabla g_i(\mathbf{x}_0)^\top \mathbf{x} + v_i,$$

and find an approximate covariance matrix:

$$\hat{\mathsf{P}}_{\mathcal{S}} = \left(\boldsymbol{\Sigma}_{\mathsf{x}}^{-1} + \sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \nabla g_i(\mathsf{x}_0) \nabla g_i(\mathsf{x}_0)^\top \right)^{-1}$$

• Observation selection task

$$\begin{array}{ll} \underset{\mathcal{S}}{\text{minimize}} & \operatorname{Tr}\left(\hat{\mathbf{P}}_{\mathcal{S}}\right) \\ \text{s.t.} & \mathcal{S} \subset [n], \ |\mathcal{S}| = K \end{array}$$

Hashemi et al.: Submodular Observation Selection for Quadratic Models

Main Idea

Exploiting Van Trees' bound (VTB) on error covariance of weakly biased estimators

Main Idea

Exploiting Van Trees' bound (VTB) on error covariance of weakly biased estimators

• A closed-form expression for VTB of quadratic models

Theorem 1

For any weakly biased estimator $\hat{x}_{\mathcal{S}}$ with error covariance $P_{\mathcal{S}}$ it holds that

$$\mathbf{P}_{\mathcal{S}} \succeq \left(\sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \left(\mathbf{Z}_i \boldsymbol{\Sigma}_x \mathbf{Z}_i^\top + \mathbf{h}_i \mathbf{h}_i^\top \right) + \mathbf{I}_x \right)^{-1} = \mathbf{B}_{\mathcal{S}}$$

Main Idea

Exploiting Van Trees' bound (VTB) on error covariance of weakly biased estimators

• A closed-form expression for VTB of quadratic models

Theorem 1

For any weakly biased estimator $\hat{x}_{\mathcal{S}}$ with error covariance $P_{\mathcal{S}}$ it holds that

$$\mathbf{P}_{\mathcal{S}} \succeq \left(\sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \left(\mathbf{Z}_i \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{Z}_i^\top + \mathbf{h}_i \mathbf{h}_i^\top \right) + \mathbf{I}_{\mathbf{x}} \right)^{-1} = \mathbf{B}_{\mathcal{S}}$$

 Proposed method: Find S by greedily maximizing Tr(.) scalarization of B_S: f^A(S) := Tr(I_x⁻¹ - B_S)

- Submodularity: $f_j(S) \ge f_j(T)$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$
- α_f -Weak Submodularity [Zhang'16, Chamon17]: $\alpha_f \times f_j(S) \ge f_j(T)$ where $\alpha_f > 1$ for all $S \subseteq T \subset \mathcal{X}$ and $j \in \mathcal{X} \setminus T$

- Submodularity: $f_j(S) \ge f_j(T)$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$
- α_f -Weak Submodularity [Zhang'16, Chamon17]: $\alpha_f \times f_j(S) \ge f_j(T)$ where $\alpha_f > 1$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$
- Greedy maximization performance:

$$f(\mathcal{S}) \geq (1 - e^{-\frac{\mathbf{1}}{\alpha_f}})f(\mathcal{O})$$

- Submodularity: $f_j(S) \ge f_j(T)$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$
- α_f -Weak Submodularity [Zhang'16, Chamon17]: $\alpha_f \times f_j(S) \ge f_j(T)$ where $\alpha_f > 1$ for all $S \subseteq T \subset \mathcal{X}$ and $j \in \mathcal{X} \setminus T$
- Greedy maximization performance:

$$f(\mathcal{S}) \geq (1 - e^{-rac{\mathbf{1}}{lpha_f}})f(\mathcal{O})$$

Theorem 2

 $f^{A}(\mathcal{S})$ is a normalized, monotone set function with bounded $\alpha_{f^{A}}$.

- Submodularity: $f_j(S) \ge f_j(T)$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$
- α_f -Weak Submodularity [Zhang'16, Chamon17]: $\alpha_f \times f_j(S) \ge f_j(T)$ where $\alpha_f > 1$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$
- Greedy maximization performance:

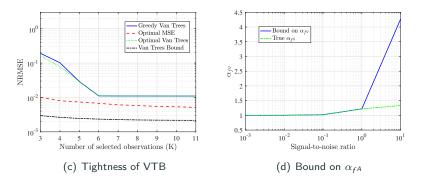
$$f(\mathcal{S}) \geq (1 - e^{-rac{\mathbf{1}}{lpha_f}})f(\mathcal{O})$$

Theorem 2

 $f^{A}(\mathcal{S})$ is a normalized, monotone set function with bounded $\alpha_{f^{A}}$.

- Interpretation of bound on $\alpha_{\rm f^A}$ as SNR condition

• Phase retrieval problem with n = 12 observations



- Asymptotic tightness of VTB
- Tightness of weak submodularity bound in low SNR regime

Thank you!

Submodular Observation Selection and Information Gathering for Quadratic Models

Poster #167

Wed Jun 12th 06:30 PM - 09:00 PM @ Pacific Ballroom

Correspondance: Abolfazl Hashemi (email: abolfazl@utexas.edu) Mahsa Ghasemi (email: mahsa.ghasemi@utexas.edu)