Approximating Orthogonal Matrices with Effective Givens Factorization

Thomas Frerix

Technical University of Munich

joint work with Joan Bruna (NYU)

Poster #164

Givens Factorization of Orthogonal Matrices

$$G^{T}(i,j,\alpha) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & \cos(\alpha) & \cdots & -\sin(\alpha) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & \sin(\alpha) & \cdots & \cos(\alpha) & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Givens Factorization of Orthogonal Matrices

$$G^{T}(i,j,\alpha) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & \cos(\alpha) & \cdots & -\sin(\alpha) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & \sin(\alpha) & \cdots & \cos(\alpha) & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Exact Givens Factorization

$$U = G_1 \dots G_N$$
 $N = \frac{d(d-1)}{2}$

Approximate Givens Factorization

$$U \approx G_1 \dots G_N$$
 $N \ll \frac{d(d-1)}{2}$
computationally hard problem

Approximate Givens Factorization

$$U \approx G_1 \dots G_N$$
 $N \ll \frac{d(d-1)}{2}$

Our Questions in this Context

 Which orthogonal matrices can be effectively approximated? (not all of them) **Approximate Givens Factorization**

$$U \approx G_1 \dots G_N$$
 $N \ll \frac{d(d-1)}{2}$

Our Questions in this Context

- Which orthogonal matrices can be effectively approximated? (not all of them)
- 2. Which principles are behind effective approximation algorithms? (sparsity-inducing algorithms)

Advantageous Setting

Once computed, applied many times

Advantageous Setting

Once computed, applied many times

Unitary Basis Transform

 $\mathsf{FFT}: \mathcal{O}\left(d^2\right) \to \mathcal{O}\left(d\log(d)\right)$

Advantageous Setting

Once computed, applied many times

Unitary Basis Transform

$$\mathsf{FFT} \colon \mathcal{O}\left(d^2\right) \to \mathcal{O}\left(d\log(d)\right)$$

Application: Graph Fourier Transform

Which Matrices can be Effectively Approximated?

Theorem

Let $\epsilon > 0$. If $N = o(d^2/\log(d))$, then as $d \to \infty$,

$$\mu\left(\left\{\left.U\in U(d)\right|\inf_{G_1\ldots G_N}\|U-\prod_n G_n\|_2\leq\epsilon
ight\}
ight)
ightarrow0\,,$$

where μ is the Haar measure over U(d).

Which Matrices can be Effectively Approximated?

Theorem

Let $\epsilon > 0$. If $N = o(d^2/\log(d))$, then as $d \to \infty$,

$$\mu\left(\left\{\left.U\in U(d)\right|\inf_{G_1\ldots G_N}\|U-\prod_n G_n\|_2\leq\epsilon
ight\}
ight)
ightarrow0$$
,

where μ is the Haar measure over U(d).

- proof is based on an ϵ -covering argument
- suggests computational-to-statistical gap together with experimental results (details at poster)

K-planted Distribution over SO(d)

Sample $U = G_1 \dots G_K$

- choose subspace (i_k, j_k) uniformly with replacement
- choose rotation angle $\alpha_k \in [0, 2\pi)$ uniformly

K-planted Distribution over SO(d)

Sample $U = G_1 \dots G_K$

- choose subspace (i_k, j_k) uniformly with replacement
- choose rotation angle $\alpha_k \in [0, 2\pi)$ uniformly

K-planted matrices quickly become dense

$$G_N^T \dots G_N^T U \approx I$$
 $\hat{U} = G_1 \dots G_N$

$$G_N^T \dots G_N^T U \approx I$$
 $\hat{U} = G_1 \dots G_N$

Approximation criterion

$$\left\| U - \hat{U} \right\|_{F, \operatorname{sym}} \coloneqq \min_{P \in \mathcal{P}_d} \left\| U - \hat{U}P \right\|_F$$

$$G_N^T \dots G_N^T U \approx I$$
 $\hat{U} = G_1 \dots G_N$

Approximation criterion

$$\left\| U - \hat{U} \right\|_{F, \operatorname{sym}} \coloneqq \min_{P \in \mathcal{P}_d} \left\| U - \hat{U}P \right\|_F$$

Better functions to be minimized greedily?

$$f(U) \coloneqq d^{-1} \|U\|_1 = d^{-1} \sum_{i,j=1}^d |U_{ij}|$$

$$G_N^T \dots G_N^T U \approx I$$
 $\hat{U} = G_1 \dots G_N$

Approximation criterion

$$\left\| U - \hat{U} \right\|_{F, \operatorname{sym}} \coloneqq \min_{P \in \mathcal{P}_d} \left\| U - \hat{U}P \right\|_F$$

Better functions to be minimized greedily?

$$f(U) \coloneqq d^{-1} \|U\|_1 = d^{-1} \sum_{i,j=1}^d |U_{ij}|$$

- *Non-convex* greedy step
- global optimum in $\mathcal{O}(d^2)$ amortized time complexity

Thank you

Poster #164

https://github.com/tfrerix/givens-factorization