Distributed Weighted Matching via Randomized Composable Coresets

MohammadHossein Bateni Google Research New York, USA

Sepehr Assadi

Vahab Mirrokni

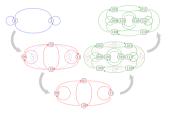
36th International Conference on Machine Learning 12 June 2019 — Long Beach, California, USA Poster #161, Pacific Ballroom

Massive graphs

Everywhere: web graph, social networks, biological networks, etc.

Massive graphs

Everywhere: web graph, social networks, biological networks, etc.



Matching: a collection of vertex-disjoint edges

- Clustering, partitioning
- Finding motifs in bioinformatics
- Trade marketing, online advertisement
- Kidney exchange
- Linear algebra, matrix decomposition

Sequential results

Variants:

- Weighted vs unweighted
- Bipartite vs non-bipartite

Algorithmic results:

- First polytime algorithm: "Blossom" decomposition [Edm65a]
- Extended to weighted case [Edm65b]
- Fastest in time $\tilde{O}(m\sqrt{n})$ [GabTar91]

Approximation algorithms:

- ▶ Greedy algorithm: 2-approx in O(m log n) time
- ▶ $1 + \epsilon$ approx in $\tilde{O}(m/\epsilon)$ time [DuaPet14]

Sequential results

Variants:

- Weighted vs unweighted
- Bipartite vs non-bipartite

Algorithmic results:

- First polytime algorithm: "Blossom" decomposition [Edm65a]
- Extended to weighted case [Edm65b]
- Fastest in time $\tilde{O}(m\sqrt{n})$ [GabTar91]

Approximation algorithms:

• Greedy algorithm: 2-approx in $O(m \log n)$ time

▶ $1 + \epsilon$ approx in $\tilde{O}(m/\epsilon)$ time [DuaPet14]

Sequential algorithms do not work

- O(m) runtime is prohibitive
- O(n) memory not available on a single machine
- Simply reading input data once may take too long!

Sequential algorithms do not work

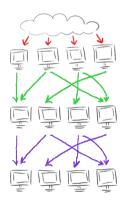
- O(m) runtime is prohibitive
- O(n) memory not available on a single machine
- Simply reading input data once may take too long!

Sequential algorithms do not work

- O(m) runtime is prohibitive
- O(n) memory not available on a single machine
- Simply reading input data once may take too long!

MapReduce: de facto industry standard

- Split data across many machines
- Split computation into several rounds
- Data is sent to machines based on keys
- Machines produce output for next round



Sequential algorithms do not work

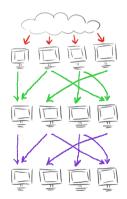
- O(m) runtime is prohibitive
- O(n) memory not available on a single machine
- Simply reading input data once may take too long!

MapReduce: de facto industry standard

- Split data across many machines
- Split computation into several rounds
- Data is sent to machines based on keys
- Machines produce output for next round

Important:

- number of rounds
- 2 number of machines
- 3 memory on each machine
- 4 amount of computation on each machine



"Greedy algorithms are practitioners' best friends—they are intuitive, simple to implement, and often lead to very good solutions. However, implementing greedy algorithms in a distributed setting is challenging since the greedy choice is inherently sequential, and it is not clear how to take advantage of the extra processing power."

— [KumMosVasVat13]

Two typical types of results:

- **1** Relatively large number of rounds to "faithfully" simulate the greedy algorithm.
- 2 Very small number of rounds (one or two) for "weak" simulation, O(1) worse than the greedy algorithm.

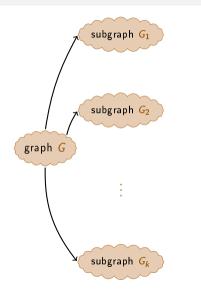
Credit	Approx	Space	Rounds	
[LatMosSurVas11] 8		$\tilde{O}(n)$	$O(\log n)$	
[CroStu14] 4		$\tilde{O}(n)$ $O(\log n)$		
[AhnGuh15]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(\varepsilon^{-1} \log n)$	
[HarLiaLiu18] 2		$\tilde{O}(n)$ $O(\log n)$		

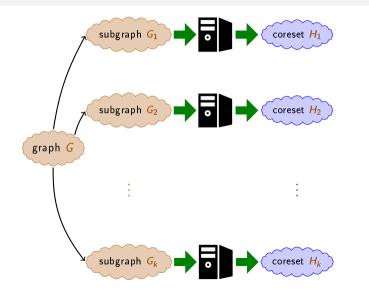
Credit	Credit Approx		Rounds
[LatMosSurVas11]	8	$\tilde{O}(n)$	$O(\log n)$
[CroStu14]	4 $\tilde{O}(n)$ $O(\log n)$		$O(\log n)$
[AhnGuh15]	$1+\varepsilon \qquad \tilde{O}(n)$		$O(arepsilon^{-1} \log n)$
[HarLiaLiu18]	2 $\tilde{O}(n)$ $O(\log$		$O(\log n)$
[CzuLacMad+18]	$2 + \varepsilon$	$\tilde{O}(n)$	$O\left(arepsilon^{-\Theta(1/arepsilon)}\cdot O(\log\log n)^2 ight)$
[AssBatBer ⁺ 19]	$2 + \varepsilon \qquad \tilde{O}(n)$		$O(\varepsilon^{-\Theta(1/\varepsilon)} \cdot \log \log n)$
[GamKalMitSve18]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-\Theta(1/arepsilon^2)} \cdot \log\log n)$

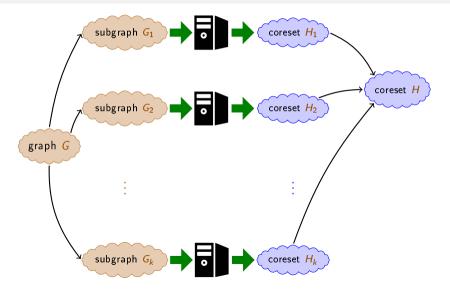
Credit	Approx S		Rounds	
[LatMosSurVas11]	8	$\tilde{O}(n)$	$O(\log n)$	
[CroStu14]	4	$\tilde{O}(n)$	$O(\log n)$	
[AhnGuh15]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-1} \log n)$	
[HarLiaLiu18]	2	$\tilde{O}(n)$	$O(\log n)$	
[CzuLacMad+18]	$2 + \varepsilon$	$\tilde{O}(n)$	$O\left(arepsilon^{-\Theta(1/arepsilon)}\cdot O(\log\log n)^2 ight)$	
[AssBatBer+19]	$2 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-\Theta(1/arepsilon)} \cdot \log\log n)$	
[GamKalMitSve18]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(\varepsilon^{-\Theta(1/\varepsilon^2)} \cdot \log \log n)$	
[LatMosSurVas11]	8	$n^{1+\Omega(1)}$	O(1)	
[CroStu14]	4	$n^{1+\Omega(1)}$	O(1)	
[AhnGuh15]	$1 + \varepsilon$	$n^{1+\Omega(1)}$	$O(1/\varepsilon)$	
[HarLiaLiu18]	2	$n^{1+\Omega(1)}$	O(1)	

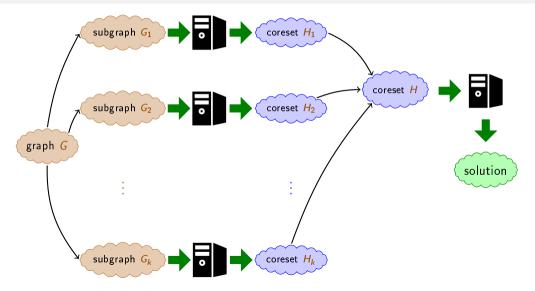
Credit	Approx	Space	Rounds	
[LatMosSurVas11]	8	$\tilde{O}(n)$	$O(\log n)$	
[CroStu14]	4	$\tilde{O}(n)$	$O(\log n)$	
[AhnGuh15]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-1} \log n)$	
[HarLiaLiu18]	2	$\tilde{O}(n)$	$O(\log n)$	
[CzuLacMad+18]	$2 + \varepsilon$	$\tilde{O}(n)$	$O\left(arepsilon^{-\Theta(1/arepsilon)}\cdot O(\log\log n)^2 ight)$	
[AssBatBer+19]	$2 + \varepsilon$	$\tilde{O}(n)$	$O(\varepsilon^{-\Theta(1/\varepsilon)} \cdot \log \log n)$	
[GamKalMitSve18]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(\varepsilon^{-\Theta(1/\varepsilon^2)} \cdot \log \log n)$	
[LatMosSurVas11]	8	$n^{1+\Omega(1)}$	<i>O</i> (1)	
[CroStu14]	4	$n^{1+\Omega(1)}$	<i>O</i> (1)	
[AhnGuh15]	$1 + \varepsilon$	$n^{1+\Omega(1)}$ $O(1/\varepsilon)$		
[HarLiaLiu18]	2	$n^{1+\Omega(1)}$ $O(1)$		
[AssKha17]	O(1)	$\tilde{O}(n\sqrt{n})$	2	
[AssBatBer ⁺ 19]	$3 + \varepsilon$	$\tilde{O}(n\sqrt{n})$	2	

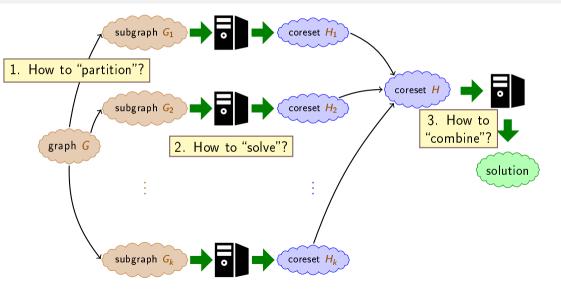
Credit	Approx	Space	Rounds
[LatMosSurVas11]	8	$\tilde{O}(n)$	$O(\log n)$
[CroStu14]	4	$\tilde{O}(n)$	$O(\log n)$
[AhnGuh15]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-1} \log n)$
[HarLiaLiu18]	2	$\tilde{O}(n)$	$O(\log n)$
[CzuLacMad+18]	$2 + \varepsilon$	$\tilde{O}(n)$	$O\left(arepsilon^{-\Theta(1/arepsilon)}\cdot O(\log\log n)^2 ight)$
[AssBatBer+19]	$2 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-\Theta(1/arepsilon)} \cdot \log\log n)$
[GamKalMitSve18]	$1 + \varepsilon$	$\tilde{O}(n)$	$O(arepsilon^{-\Theta(1/arepsilon^2)} \cdot \log\log n)$
[LatMosSurVas11]	8	$n^{1+\Omega(1)}$	O(1)
[CroStu14]	4	$n^{1+\Omega(1)}$	O(1)
[AhnGuh15]	$1 + \varepsilon$	$n^{1+\Omega(1)}$	O(1/arepsilon)
[HarLiaLiu18]	2	$n^{1+\Omega(1)}$	O(1)
[AssKha17]	O(1)	$\tilde{O}(n\sqrt{n})$ 2	
[AssBatBer ⁺ 19]	$3 + \varepsilon$	$\tilde{O}(n\sqrt{n})$ 2	
Our work	$2 + \varepsilon$	$O(n\sqrt{n})$	2











- ▶ Let G_1, \ldots, G_k be a partitioning of G; send each edge $e \in G$ to a subgraph G_i arbitrarily.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ► ALG outputs an α -approx composable coreset of size *s* for a problem *P* iff $P(ALG(G_1) \cup ... \cup ALG(G_k))$ is an α -approx to P(G).

- ▶ Let G_1, \ldots, G_k be a partitioning of G; send each edge $e \in G$ to a subgraph G_i arbitrarily.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ALG outputs an α -approx composable coreset of size s for a problem P iff $P(ALG(G_1) \cup \ldots \cup ALG(G_k))$ is an α -approx to P(G).

• Design ALG for small α (quality) and s (size).

- ▶ Let G_1, \ldots, G_k be a partitioning of G; send each edge $e \in G$ to a subgraph G_i arbitrarily.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ALG outputs an α -approx composable coreset of size s for a problem P iff $P(ALG(G_1) \cup \ldots \cup ALG(G_k))$ is an α -approx to P(G).
- Design ALG for small α (quality) and s (size).
 n^{o(1)} approx requires n^{2-o(1)} space [AssKhaLiYar16].

- Let G₁,..., G_k be a random partitioning of G; send each edge e ∈ G to a subgraph G_i uniformly at random.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ALG outputs an α-approx randomized composable coreset of size s for a problem
 P iff
 P(ALG(G₁) ∪ ... ∪ ALG(G_k)) is an α-approx to P(G).
- Design ALG for small α (quality) and s (size).
- ▶ $n^{o(1)}$ approx requires $n^{2-o(1)}$ space [AssKhaLiYar16].
- Randomized coresets were introduced by [MirZad15] for submodular maximization.

- Let G₁,..., G_k be a random μ-partitioning of G; send each edge e ∈ G to μ subgraphs G_i uniformly at random.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ALG outputs an α-approx randomized composable coreset of size s and multiplicity µ for a problem P iff P(ALG(G₁) ∪ ... ∪ ALG(G_k)) is an α-approx to P(G).
- Design ALG for small α (quality) and s (size).
- ▶ $n^{o(1)}$ approx requires $n^{2-o(1)}$ space [AssKhaLiYar16].
- Randomized coresets were introduced by [MirZad15] for submodular maximization.

- Let G₁,..., G_k be a random μ-partitioning of G; send each edge e ∈ G to μ subgraphs G_i uniformly at random.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ALG outputs an α-approx randomized composable coreset of size s and multiplicity µ for a problem P iff P(ALG(G₁) ∪ ... ∪ ALG(G_k)) is an α-approx to P(G).
- Maximum-matching coresets do not give $\alpha < 2$, but sparsification (EDCS) + randomized coresets give $\alpha = 1.5 + \epsilon$ approx [AssBatBer⁺19].

- Let G₁,..., G_k be a random µ-partitioning of G; send each edge e ∈ G to µ subgraphs G_i uniformly at random.
- Consider an algorithm ALG that given G_i outputs a subgraph H_i of G_i with s edges.
- ALG outputs an α-approx randomized composable coreset of size s and multiplicity µ for a problem P iff P(ALG(G₁) ∪ ... ∪ ALG(G_k)) is an α-approx to P(G).
- Maximum-matching coresets do not give $\alpha < 2$, but sparsification (EDCS) + randomized coresets give $\alpha = 1.5 + \epsilon$ approx [AssBatBer⁺19].

We present a simple $(2 + \epsilon)$ -approximation randomized coreset with mulitplicity $\mu = O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ for maximum-weight matching.

- **1** Send each edge to $\mu = O(\frac{\log 1/\epsilon}{\epsilon})$ machines.
- Sort edges according to weight on each machine (with consistent tie-breaking), and greedily find a maximal matching (the coresets).
- **3** Find a maximum matching M of the union of coresets H.

• This gives a $2 + \epsilon$ approx.

- **Simple**, scalable implementation except for Step 3.
 - Replacing Step 3 with a greedy maximal matching algorithm is provably a 3 + ε approx (not a 4 + ε approx).

Better analysis uses "consistency" of maximal (vs. maximum) matching coresets.

- **1** Send each edge to $\mu = O(\frac{\log 1/\epsilon}{\epsilon})$ machines.
- Sort edges according to weight on each machine (with consistent tie-breaking), and greedily find a maximal matching (the coresets).
- **3** Find a maximum matching M of the union of coresets H.

• This gives a $2 + \epsilon$ approx.

- **Simple**, scalable implementation except for Step 3.
 - Replacing Step 3 with a greedy maximal matching algorithm is provably a 3 + ε approx (not a 4 + ε approx).
- Better analysis uses "consistency" of maximal (vs. maximum) matching coresets.

- **1** Send each edge to $\mu = O(\frac{\log 1/\epsilon}{\epsilon})$ machines.
- Sort edges according to weight on each machine (with consistent tie-breaking), and greedily find a maximal matching (the coresets).
- **3** Find a maximum matching M of the union of coresets H.

• This gives a $2 + \epsilon$ approx.

- **Simple**, scalable implementation except for **Step 3**.
 - Replacing Step 3 with a greedy maximal matching algorithm is provably a 3 + ε approx (not a 4 + ε approx).

Better analysis uses "consistency" of maximal (vs. maximum) matching coresets.

- **1** Send each edge to $\mu = O(\frac{\log 1/\epsilon}{\epsilon})$ machines.
- Sort edges according to weight on each machine (with consistent tie-breaking), and greedily find a maximal matching (the coresets).
- **3** Find a maximum matching M of the union of coresets H.

- This gives a $2 + \epsilon$ approx.
- **Simple**, scalable implementation except for **Step 3**.
 - Replacing Step 3 with a greedy maximal matching algorithm is provably a $3 + \epsilon$ approx (not a $4 + \epsilon$ approx).

Better analysis uses "consistency" of maximal (vs. maximum) matching coresets.

- **1** Send each edge to $\mu = O(\frac{\log 1/\epsilon}{\epsilon})$ machines.
- Sort edges according to weight on each machine (with consistent tie-breaking), and greedily find a maximal matching (the coresets).
- **3** Find a maximum matching M of the union of coresets H.

- This gives a $2 + \epsilon$ approx.
- **Simple**, scalable implementation except for **Step 3**.
 - Replacing Step 3 with a greedy maximal matching algorithm is provably a $3 + \epsilon$ approx (not a $4 + \epsilon$ approx).
- Better analysis uses "consistency" of maximal (vs. maximum) matching coresets.

- Machine *i* works on subgraph G_i and contributes maximal matching M_i to coreset $H = \bigcup_i M_i$.
- ► Compare to a reference maximum-weight matching *M**.
- Let permutation π of edges be the consistent sorting order.
- Edge $e \in M^*$ is free on machine *i* iff its endpoints are available when *e* "arrives."
 - Otherwise $e \in M^*$ is blocked on machine *i*.
 - Maybe *e* is missing on machine *i*.
- **1** Subgraphs G_i have the same distribution; focus on G_1 and M_1 .
- ② A blocked edge has a heavier edge in M_i as its "certificate."
 - Use it in the charging argument for M_1 .
- **3** Free edge part of G_i will make it to M_i and H.
 - Free edges in $M_2 \cup M_3 \cup \ldots$ compensate the free edges in M_1 .
 - Subtle argument for "augmentation."

- Machine *i* works on subgraph G_i and contributes maximal matching M_i to coreset $H = \bigcup_i M_i$.
- Compare to a reference maximum-weight matching M*.
- Let permutation π of edges be the consistent sorting order.
- Edge $e \in M^*$ is free on machine *i* iff its endpoints are available when *e* "arrives."
 - Otherwise $e \in M^*$ is blocked on machine *i*.
 - Maybe e is missing on machine i.
- **1** Subgraphs G_i have the same distribution; focus on G_1 and M_1 .
- 2 A blocked edge has a heavier edge in M_i as its "certificate."
 - Use it in the charging argument for M_1 .
- **3** Free edge part of G_i will make it to M_i and H_i .
 - Free edges in $M_2 \cup M_3 \cup \ldots$ compensate the free edges in M_1 .
 - Subtle argument for "augmentation."

- Machine *i* works on subgraph G_i and contributes maximal matching M_i to coreset $H = \bigcup_i M_i$.
- Compare to a reference maximum-weight matching M*.
- Let permutation π of edges be the consistent sorting order.
- Edge $e \in M^*$ is free on machine *i* iff its endpoints are available when *e* "arrives."
 - Otherwise $e \in M^*$ is blocked on machine *i*.
 - Maybe e is missing on machine i.
- 1 Subgraphs G_i have the same distribution; focus on G_1 and M_1 .
- 2 A blocked edge has a heavier edge in M_i as its "certificate."
 - Use it in the charging argument for M_1 .
- **3** Free edge part of G_i will make it to M_i and H.
 - Free edges in $M_2 \cup M_3 \cup \ldots$ compensate the free edges in M_1 .
 - Subtle argument for "augmentation."

- Machine *i* works on subgraph G_i and contributes maximal matching M_i to coreset $H = \bigcup_i M_i$.
- Compare to a reference maximum-weight matching M*.
- Let permutation π of edges be the consistent sorting order.
- Edge $e \in M^*$ is free on machine *i* iff its endpoints are available when *e* "arrives."
 - Otherwise $e \in M^*$ is blocked on machine *i*.
 - Maybe e is missing on machine i.
- 1 Subgraphs G_i have the same distribution; focus on G_1 and M_1 .
- **2** A blocked edge has a heavier edge in M_i as its "certificate."
 - Use it in the charging argument for M_1 .
- **3** Free edge part of G_i will make it to M_i and H_i .
 - Free edges in $M_2 \cup M_3 \cup \ldots$ compensate the free edges in M_1 .
 - Subtle argument for "augmentation."

- Machine *i* works on subgraph G_i and contributes maximal matching M_i to coreset $H = \bigcup_i M_i$.
- Compare to a reference maximum-weight matching M*.
- Let permutation π of edges be the consistent sorting order.
- Edge $e \in M^*$ is free on machine *i* iff its endpoints are available when *e* "arrives."
 - Otherwise $e \in M^*$ is blocked on machine *i*.
 - Maybe e is missing on machine i.
- 1 Subgraphs G_i have the same distribution; focus on G_1 and M_1 .
- **2** A blocked edge has a heavier edge in M_i as its "certificate."
 - Use it in the charging argument for M_1 .
- **3** Free edge part of G_i will make it to M_i and H.
 - Free edges in $M_2 \cup M_3 \cup \ldots$ compensate the free edges in M_1 .
 - Subtle argument for "augmentation."

Focus on 2-round algorithms: [AssBatBer⁺19] too complicated

[AssKha17] without [CroStu14] not viable for weighted matching

- Focus on 2-round algorithms: [AssBatBer⁺19] too complicated
- [AssKha17] without [CroStu14] not viable for weighted matching
- [AssKha17] with [CroStu14] not as good as the new algorithm

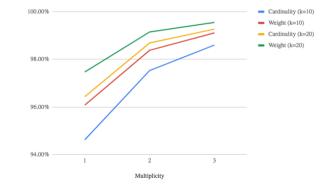
Dataset				Speed-up	
	V	E	${\it \Delta}$	[AssKha17]	This work
Friendster	66M	550B	2.1M	4.7×	130x
Orkut	3M	21B	900K	1.4×	17x
LiveJournal	4.8M	3.9B	444K	2.5×	бx
DBLP	1.5M	5.9M	1961	1.2x	3x

- Focus on 2-round algorithms: [AssBatBer⁺19] too complicated
- [AssKha17] without [CroStu14] not viable for weighted matching
- [AssKha17] with [CroStu14] not as good as the new algorithm

Dataset				Quality	
	V	E	Δ	[AssKha17]	This work
Friendster	66M	550B	2.1M	94.4%	99.8%
Orkut	3M	21B	900K	92.4%	98.9%
LiveJournal	4.8M	3.9B	444K	96.5%	99.9%
DBLP	1.5M	5.9M	1961	92.4%	99.6%

- Focus on 2-round algorithms: [AssBatBer⁺19] too complicated
- [AssKha17] without [CroStu14] not viable for weighted matching
- [AssKha17] with [CroStu14] not as good as the new algorithm

Multiplicity 2 or 3 is sufficient



Summary

- A simple, scalable algorithm for maximum-weight matching with $2 + \epsilon$ approximation.
 - Uses greedy algorithm for coreset construction.
 - Uses multiplicity.
- **Good performance** in practice.
 - Small multiplicity suffices.
 - Beats prior algorithms.
 - Huge speed-up of sequential algorithm, but faithful simulation.

Summary

• A simple, scalable algorithm for maximum-weight matching with $2 + \epsilon$ approximation.

- Uses greedy algorithm for coreset construction.
- Uses multiplicity.
- ► Good performance in practice.
 - Small multiplicity suffices.
 - Beats prior algorithms.
 - Huge speed-up of sequential algorithm, but faithful simulation.

Thanks!

Poster #161 Pacific Ballroom

- Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal algorithms for maximum matching under resource constraints. In SPAA, pages 202–211, 2015.
- Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In SODA, pages 1616–1635, 2019.
- Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for matching and vertex cover. In SPAA, pages 3–12, 2017.
- Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dynamic graph streams and the simultaneous communication model. In *SODA*, pages 1345–1364, 2016.
- Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching, via unweighted matching. In *APPROX*, pages 96–104, 2014.
- Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and Piotr Sankowski. Round compression for parallel matching algorithms. In *STOC*, pages 471–484, 2018.

- Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM, 61(1):1:1-1:23, 2014.
- Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. *Journal of Research of the National Bureau of Standards B*, 69(125-130):55–56, 1965.
- Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467, 1965.
- Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching problems. J. ACM, 38(4):815–853, 1991.
- Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via unweighted augmentations. *CoRR*, abs/1811.02760. To appear in PODC 2019., 2018.
- Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms in the mapreduce model. In SPAA, pages 43–52, 2018.
- Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms in mapreduce and streaming. In SPAA, pages 1–10, 2013.

- Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method for solving graph problems in mapreduce. In SPAA, pages 85–94, 2011.
- Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for distributed submodular maximization. In *STOC*, pages 153–162, 2015.