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The Median of Means
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x1, . . . , xn i.i.d. realizations of r.v. X s.t. E[X ] = θ, Var(X ) = σ2.

∀δ ∈ [e1− n
2 , 1[, set K := dlog(1/δ)e, it holds [Devroye et al., 2016]:
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The Median of Randomized Means (1st contribution)
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With blocks formed by SWoR, ∀ τ ∈]0, 1/2[, ∀ δ ∈ [2e− 8τ2n
9 , 1[, set

K :=
⌈

log(2/δ)
2(1/2−τ)2

⌉
, and B :=
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⌋
, it holds:
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U-statistics & Pairwise Learning

Estimate E[h(X1,X2)] from an i.i.d. sample x1, . . . , xn:

Un(h) = 2
n(n − 1)

∑
1≤i<j≤n

h(xi , xj).

Ex: the empirical variance when h(x , x ′) = (x−x ′)2

2 .

Encountered e.g. in pairwise ranking or in metric learning:

R̂n(r) = 2
n(n − 1)

∑
1≤i<j≤n

1 {r(xi , xj) · (yi − yj) ≤ 0} .
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The Median of (Randomized) U-statistics (2nd contribution)

Blocks are formed either by partitioning or by SWoR. Medians of
the (randomized) U-statistics verify ∀τ ∈]0, 1/2[ w.p.a.l. 1− δ:

∣∣∣θ̂MoU − θ(h)
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with C1(τ) −−−→
τ→ 1

2

C1 and C2(τ) −−−→
τ→ 1

2

C2.
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The Pairwise Tournament Procedure (3rd contribution)

Adapted from [Lugosi and Mendelson, 2016].
We want to find f ∗ ∈ argmin

f ∈F
R(f ) = E[`(f , (X ,X ′))].

For f ∈ F , let Hf :=
√
`(f ,X ,X ′). For any pair (f , g) ∈ F2:

1) Compute the MoU estimate of ‖Hf − Hg‖L1

ΦS(f , g) = median
(
Û1|Hf − Hg |, . . . , ÛK |Hf − Hg |

)
.

2) If it is large enough, compute the match

ΨS′(f , g) = median
(
Û1(H2

f − H2
g ), . . . , ÛK ′(H2

f − H2
g )
)
.

f̂ winning all its matches verify w.p.a.l. 1− exp(c0n min{1, r2})

R(f̂ )−R(f ∗) ≤ cr .
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Conclusion

• MoM exhibits good guarantees with few assumptions

• 1st contrib. Guarantees preserved through randomization

• 2nd contrib. Extension to (randomized) U-statistics

• 3rd contrib. Pairwise tournament procedure
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