Q ip paris
On Medians of (Randomized) Pairwise Means

Pierre Laforgue ${ }^{1}$, Stephan Clémençon ${ }^{1}$, Patrice Bertail ${ }^{2}$
${ }^{1}$ LTCI, Télécom Paris, Institut Polytechnique de Paris, France
${ }^{2}$ Modal'X, UPL, Université Paris-Nanterre, France

The Median of Means

x_{1}, \ldots, x_{n} i.i.d. realizations of r.v. X s.t. $\mathbb{E}[X]=\theta, \operatorname{Var}(X)=\sigma^{2}$.
$\forall \delta \in\left[e^{1-\frac{n}{2}}, 1[\right.$, set $K:=\lceil\log (1 / \delta)\rceil$, it holds [Devroye et al., 2016]:

$$
\mathbb{P}\left\{\left|\hat{\theta}_{\mathrm{MoM}}-\theta\right|>2 \sqrt{2} e \sigma \sqrt{\frac{1+\log (1 / \delta)}{n}}\right\} \leq \delta .
$$

The Median of Randomized Means ($1^{\text {st }}$ contribution)

With blocks formed by SWoR, $\forall \tau \in] 0,1 / 2\left[, \forall \delta \in\left[2 e^{-\frac{8 \tau^{2} n}{9}}, 1[\right.\right.$, set $K:=\left\lceil\frac{\log (2 / \delta)}{2(1 / 2-\tau)^{2}}\right\rceil$, and $B:=\left\lfloor\frac{8 \tau^{2} n}{9 \log (2 / \delta)}\right\rfloor$, it holds:

$$
\mathbb{P}\left\{\left|\bar{\theta}_{\mathrm{MoRM}}-\theta\right|>\frac{3 \sqrt{3} \sigma}{2 \tau^{3 / 2}} \sqrt{\frac{\log (2 / \delta)}{n}}\right\} \leq \delta .
$$

U-statistics \& Pairwise Learning

Estimate $\mathbb{E}\left[h\left(X_{1}, X_{2}\right)\right]$ from an i.i.d. sample x_{1}, \ldots, x_{n} :

$$
U_{n}(h)=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} h\left(x_{i}, x_{j}\right)
$$

Ex: the empirical variance when $h\left(x, x^{\prime}\right)=\frac{\left(x-x^{\prime}\right)^{2}}{2}$.

Encountered e.g. in pairwise ranking or in metric learning:

$$
\widehat{\mathcal{R}}_{n}(r)=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} \mathbb{1}\left\{r\left(x_{i}, x_{j}\right) \cdot\left(y_{i}-y_{j}\right) \leq 0\right\} .
$$

The Median of (Randomized) U-statistics (2 ${ }^{\text {nd }}$ contribution)

Blocks are formed either by partitioning or by SWoR. Medians of the (randomized) U-statistics verify $\forall \tau \in] 0,1 / 2[$ w.p.a.l. $1-\delta$:

$$
\begin{aligned}
& \left|\hat{\theta}_{\mathrm{MoU}}-\theta(h)\right| \leq \sqrt{\frac{C_{1} \log \frac{1}{\delta}}{n}+\frac{C_{2} \log ^{2}\left(\frac{1}{\delta}\right)}{n\left(2 n-9 \log \frac{1}{\delta}\right)}}, \\
& \left|\bar{\theta}_{\mathrm{MoRU}}-\theta(h)\right| \leq \sqrt{\frac{C_{1}(\tau) \log \frac{2}{\delta}}{n}+\frac{C_{2}(\tau) \log ^{2}\left(\frac{2}{\delta}\right)}{n\left(8 n-9 \log \frac{2}{\delta}\right)}},
\end{aligned}
$$

with $C_{1}(\tau) \underset{\tau \rightarrow \frac{1}{2}}{\longrightarrow} C_{1}$ and $C_{2}(\tau) \underset{\tau \rightarrow \frac{1}{2}}{\longrightarrow} C_{2}$.

The Pairwise Tournament Procedure ($3^{\text {rd }}$ contribution)

Adapted from [Lugosi and Mendelson, 2016].
We want to find $f^{*} \in \operatorname{argmin} \mathcal{R}(f)=\mathbb{E}\left[\ell\left(f,\left(X, X^{\prime}\right)\right)\right]$.

$$
\stackrel{0}{f \in \mathcal{F}}
$$

For $f \in \mathcal{F}$, let $H_{f}:=\sqrt{\ell\left(f, X, X^{\prime}\right)}$. For any pair $(f, g) \in \mathcal{F}^{2}$:

1) Compute the MoU estimate of $\left\|H_{f}-H_{g}\right\|_{L_{1}}$

$$
\Phi_{\mathcal{S}}(f, g)=\operatorname{median}\left(\hat{U}_{1}\left|H_{f}-H_{g}\right|, \ldots, \hat{U}_{K}\left|H_{f}-H_{g}\right|\right) .
$$

2) If it is large enough, compute the match

$$
\Psi_{\mathcal{S}^{\prime}}(f, g)=\operatorname{median}\left(\hat{U}_{1}\left(H_{f}^{2}-H_{g}^{2}\right), \ldots, \hat{U}_{K^{\prime}}\left(H_{f}^{2}-H_{g}^{2}\right)\right) .
$$

\hat{f} winning all its matches verify w.p.a.l. $1-\exp \left(c_{0} n \min \left\{1, r^{2}\right\}\right)$

$$
\mathcal{R}(\hat{f})-\mathcal{R}\left(f^{*}\right) \leq c r .
$$

Conclusion

- MoM exhibits good guarantees with few assumptions

Conclusion

- MoM exhibits good guarantees with few assumptions
- $1^{\text {st }}$ contrib. Guarantees preserved through randomization

Conclusion

- MoM exhibits good guarantees with few assumptions
- $1^{\text {st }}$ contrib. Guarantees preserved through randomization
- $2^{\text {nd }}$ contrib. Extension to (randomized) U-statistics

Conclusion

- MoM exhibits good guarantees with few assumptions
- $1^{\text {st }}$ contrib. Guarantees preserved through randomization
- $2^{\text {nd }}$ contrib. Extension to (randomized) U-statistics
- $3^{\text {rd }}$ contrib. Pairwise tournament procedure

References

Revroye, L., Lerasle, M., Lugosi, G., Oliveira, R. I., et al. (2016).

Sub-gaussian mean estimators.
The Annals of Statistics, 44(6):2695-2725.
E Lugosi, G. and Mendelson, S. (2016).
Risk minimization by median-of-means tournaments.
arXiv preprint arXiv:1608.00757.
击 Minsker, S. et al. (2015).
Geometric Median and Robust Estimation in Banach
Spaces.
Bernoulli, 21(4):2308-2335.

