The advantages of multiple classes for reducing overfitting from test set reuse

Vitaly Feldman

Roy Frostig

Moritz Hardt

Google Research Brain team

Google Research Brain team

Test data is reused. Are results still valid?

How much bias is caused by reuse?

Meanwhile: not much overfitting on CIFAR/ImageNet/MNIST [RRSS'18, YB'19]

Main result: class multiplicity mitigates bias

Theorem: for *k* < *n*/*m*, with *n* examples, *m* classes, *k* accuracy queries

bias
$$\leq \tilde{O}\left(\sqrt{\frac{k}{nm}}\right)$$

where bias = $\frac{1}{n} \sum_{(x,y)\in S} \mathbf{1}[f(x) = y] - \Pr_{(x,y)\sim \mathcal{P}}[f(x) = y]$ test set accuracy population accuracy

Main result: class multiplicity mitigates bias

Theorem: for *k* < *n*/*m*, with *n* examples, *m* classes, *k* accuracy queries

$$\tilde{\Omega}\left(\sqrt{\frac{k}{nm^2}}\right) \leq \text{bias } \leq \tilde{O}\left(\sqrt{\frac{k}{nm}}\right)$$

Lower bound by an *overfitting attack* that is:

- Computationally efficient
- Optimal among *point-wise* attacks
- Can incorporate *priors*

Attacking the ImageNet test set

- Scale: 50K points over 1K labels
- Prior: ResNet-50v2
- Overfitting is possible, e.g. 3% bias with ~5K queries

Also...

- The many-query regime, *k* > *n/m*
 - A recovery-based attack
 - A matching upper bound
- More experiments!

