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Motivating examples

• Conditional average treatment estimation (CATE) from observational data
• Outcome !" (demand)
• Treatment #" (pricing)
• Feature $" that captures heterogeneity (income level)
• Confounders %"(other observed variables)

Dynamic pricing Clinical trials Targeted advertising
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More generally…
• In the language of econometrics:

Given a target feature !, find a solution "#(!) to

& '((; ", ℎ#(,,-)) , = !] = 0

with score function ' and nuisance function ℎ#
• Other examples: non-parametric regression, instrumental variable 

regression, local maximum likelihood estimation, etc.



Orthogonal Random Forest (ORF)

Generalized Random Forest (GRF)

[Wager & Athey 2018; Athey et al. 2019] 
Orthogonality (or double ML)

[Neyman1979; Chernozhukov et al. 2017] 

Method:
• Perform two-stage estimation: first 

estimate nuisance, then estimate target !"
Pros:

• Robust to high-dimensional confounders
Cons:

• Assumes parametric form !"

Method:
• Non-parametric random forest-based 

estimation
Pros:

• Allows more general functions !"
Cons:

• Does not directly handle high-dimensional 
nuisance functions



Main theoretical results for ORF

Nuisance estimation procedure
• Forest Lasso method that leverages locally sparse structure

Accuracy for ORF estimate !"
• Consistency error rate
• Asymptotic normality



Empirical Evalua,on
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