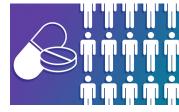
Orthogonal Random Forests for Causal Inference

Steven Wu University of Minnesota

Joint work with: Miruna Oprescu and Vasilis Syrgkanis Microsoft Research—New England



Motivating examples

Dynamic pricing

Clinical trials

Targeted advertising

- Conditional average treatment estimation (CATE) from observational data
 - Outcome *Y_i* (demand)
 - Treatment T_i (pricing)
 - Feature X_i that captures heterogeneity (income level)
 - Confounders W_i (other observed variables)

Treatment effect

$$Y = \mu(X, W) \cdot T + f_0(X, W) + \epsilon$$

$$T = g_0(X, W) + \eta$$

Our Goal: CATE estimation

$$\theta_0(x) = E[\mu_0(X, W) | X = x]$$

More generally...

• In the language of econometrics:

Given a target feature x, find a solution $\theta_0(x)$ to $E[\psi(Z; \theta, h_0(X, W)) | X = x] = 0$

with score function ψ and nuisance function h_0

• Other examples: non-parametric regression, instrumental variable regression, local maximum likelihood estimation, etc.

Orthogonal Random Forest (ORF)

Orthogonality (or double ML)

[Neyman1979; Chernozhukov et al. 2017]

Generalized Random Forest (GRF) [Wager & Athey 2018; Athey et al. 2019]

Method:

• Perform two-stage estimation: first estimate nuisance, then estimate target θ_0

Pros:

• Robust to high-dimensional confounders

Cons:

• Assumes parametric form θ_0

Method:

 Non-parametric random forest-based estimation

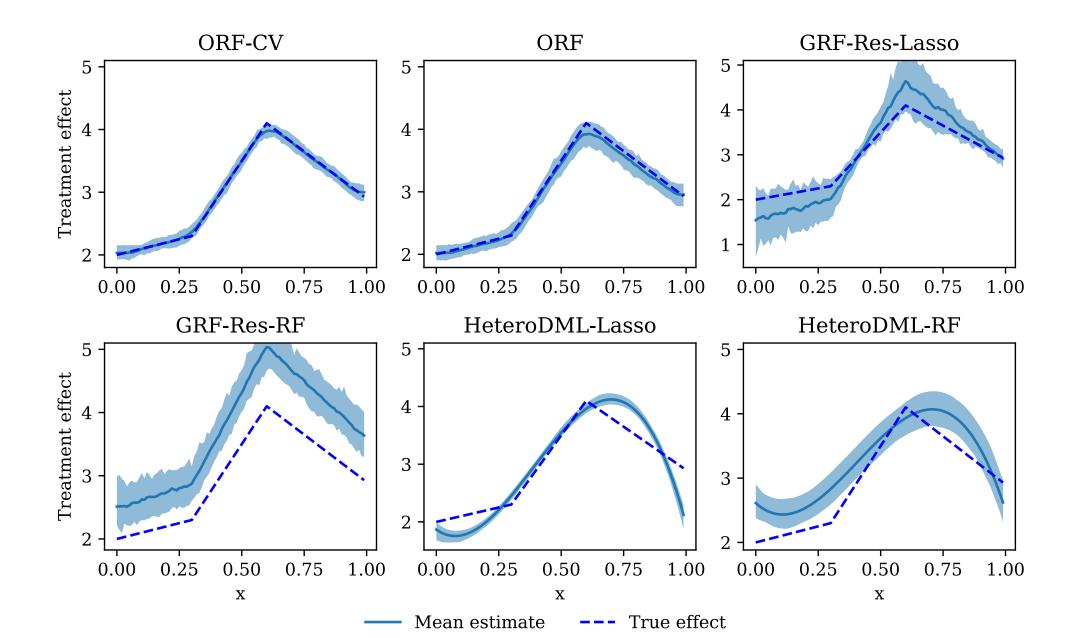
Pros:

• Allows more general functions θ_0

Cons:

• Does not directly handle high-dimensional nuisance functions

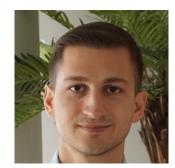
Main theoretical results for ORF


Accuracy for ORF estimate $\hat{\theta}$

- Consistency error rate
- Asymptotic normality

Nuisance estimation procedure

• Forest Lasso method that leverages locally sparse structure


Empirical Evaluation

Orthogonal Random Forests for Causal Inference

Poster: Wed Jun 12th @ Pacific Ballroom #195

