Near optimal finite time identification of arbitrary linear dynamical systems

Tuhin Sarkar \& Alexander Rakhlin

Massachusetts Institute of Technology

$$
\text { June 12, } 2019
$$

Plan

(1) Problem Definition
(2) Analysis and Techniques
(3) Results
(4) Main Results
(5) Poster Details

Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL systems. Formally,

$$
\begin{equation*}
X_{t+1}=A X_{t}+\eta_{t+1} \tag{1}
\end{equation*}
$$

- $X_{t}, \eta_{t} \in \mathbb{R}^{n} . X_{t}$ is state vector, η_{t} is noise vector.
- A is state transition matrix : characterizes the LTI system.
- Assume $\left\{\eta_{t}\right\}_{t=1}^{\infty}$ is isotropic and subGaussian.

Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL systems. Formally,

$$
\begin{equation*}
X_{t+1}=A X_{t}+\eta_{t+1} \tag{1}
\end{equation*}
$$

- $X_{t}, \eta_{t} \in \mathbb{R}^{n}$. X_{t} is state vector, η_{t} is noise vector.
- A is state transition matrix : characterizes the LTI system.
- Assume $\left\{\eta_{t}\right\}_{t=1}^{\infty}$ is isotropic and subGaussian.

Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL systems. Formally,

$$
\begin{equation*}
X_{t+1}=A X_{t}+\eta_{t+1} \tag{1}
\end{equation*}
$$

- $X_{t}, \eta_{t} \in \mathbb{R}^{n}$. X_{t} is state vector, η_{t} is noise vector.
- A is state transition matrix : characterizes the LTI system.
- Assume $\left\{\eta_{t}\right\}_{t=1}^{\infty}$ is isotropic and subGaussian.

Learning A from data

Goal : Learn A from $\left\{X_{t}\right\}_{t=1}^{T}$

$$
\hat{A}=\inf _{A_{o}} \sum_{t=1}^{T}\left\|X_{t+1}-A_{o} X_{t}\right\|_{2}^{2}
$$

Estimation error

$$
\begin{equation*}
E=A-\hat{A}=\left(\sum_{t=1}^{T} \eta_{t+1} X_{t}^{\top}\right)\left(\sum_{t=1}^{T} X_{t} X_{t}^{\top}\right)^{+} \tag{2}
\end{equation*}
$$

Error analysis hard : $\left\{X_{t}\right\}_{t=1}^{T}$ are not independent.

Related Work

- Faradonbeh et. al. (2017). Finite time identification in unstable linear systems.
- Simchowitz et. al. (2018). Learning without mixing : Towards a sharp analysis of linear system identification.

Past works fail to capture correct behavior for all A.

Main Technique

The analysis proceeds in two steps :

- Show invertibility of sample covariance matrix :
$\sum_{t=1}^{T} X_{t} X_{t}^{\top} \approx f(T) I$.
- Show the following for self-normalized martingale term

Main Technique

The analysis proceeds in two steps :

- Show invertibility of sample covariance matrix :
$\sum_{t=1}^{T} X_{t} X_{t}^{\top} \approx f(T) I$.
- Show the following for self-normalized martingale term :

$$
\left(\sum_{t=1}^{T} \eta_{t+1} X_{t}^{\top}\right)\left(\sum_{t=1}^{T} X_{t} X_{t}^{\top}\right)^{-1 / 2}=O(1)
$$

Sample Covariance Matrix

Let $\rho_{i}(A)$ be the absolute value of $i^{\text {th }}$ eigenvalue of A with $\rho_{i}(A) \geq \rho_{i+1}(A)$. Then

- $\rho_{i} \in S_{0} \Longrightarrow \rho_{i}(A) \leq 1-C / T$
- $\rho_{i} \in S_{1} \Longrightarrow \rho_{i}(A) \in[1-C / T, 1+C / T]$
- $\rho_{i} \in S_{2} \Longrightarrow \rho_{i}(A) \geq 1+C / T$

Theorem

- $\rho_{i}(A) \in S_{0} \Longrightarrow \sum_{t=1}^{T} X_{t} X_{t}^{\top}=\Theta(T)$

and sufficient "regularity" conditions only)

Sample Covariance Matrix

Let $\rho_{i}(A)$ be the absolute value of $i^{\text {th }}$ eigenvalue of A with $\rho_{i}(A) \geq \rho_{i+1}(A)$. Then

- $\rho_{i} \in S_{0} \Longrightarrow \rho_{i}(A) \leq 1-C / T$
- $\rho_{i} \in S_{1} \Longrightarrow \rho_{i}(A) \in[1-C / T, 1+C / T]$
- $\rho_{i} \in S_{2} \Longrightarrow \rho_{i}(A) \geq 1+C / T$

Theorem

- $\rho_{i}(A) \in S_{0} \Longrightarrow \sum_{t=1}^{T} X_{t} X_{t}^{\top}=\Theta(T)$
- $\rho_{i}(A) \in S_{1} \Longrightarrow \sum_{t=1}^{T} X_{t} X_{t}^{\top}=\Omega\left(T^{2}\right)$

and sufficient "regularity" conditions only)

Sample Covariance Matrix

Let $\rho_{i}(A)$ be the absolute value of $i^{\text {th }}$ eigenvalue of A with $\rho_{i}(A) \geq \rho_{i+1}(A)$. Then

- $\rho_{i} \in S_{0} \Longrightarrow \rho_{i}(A) \leq 1-C / T$
- $\rho_{i} \in S_{1} \Longrightarrow \rho_{i}(A) \in[1-C / T, 1+C / T]$
- $\rho_{i} \in S_{2} \Longrightarrow \rho_{i}(A) \geq 1+C / T$

Theorem

- $\rho_{i}(A) \in S_{0} \Longrightarrow \sum_{t=1}^{T} X_{t} X_{t}^{\top}=\Theta(T)$
- $\rho_{i}(A) \in S_{1} \Longrightarrow \sum_{t=1}^{T} X_{t} X_{t}^{\top}=\Omega\left(T^{2}\right)$
- $\rho_{i}(A) \in S_{2} \Longrightarrow \sum_{t=1}^{T} X_{t} X_{t}^{\top}=\Omega\left(e^{a T}\right)$ (under necessary and sufficient "regularity" conditions only)

Self Normalized Martingale

Theorem (Abbasi-Yadkori et. al. 2011)

Let V be a deterministic matrix with $V \succ 0$. For any $0<\delta<1$ and $\left\{\eta_{t}, X_{t}\right\}_{t=1}^{T}$ defined as before, we have with probability $1-\delta$

$$
\begin{align*}
& \left\|\left(\bar{Y}_{T-1}\right)^{-1 / 2} \sum_{t=0}^{T-1} X_{t} \eta_{t+1}^{\prime}\right\|_{2} \\
& \leq R \sqrt{8 n \log \left(\frac{5 \operatorname{det}\left(\bar{Y}_{T-1}\right)^{1 / 2 n} \operatorname{det}(V)^{-1 / 2 n}}{\delta^{1 / n}}\right)} \tag{3}
\end{align*}
$$

where $\bar{Y}_{\tau}^{-1}=\left(Y_{\tau}+V\right)^{-1}$ and R^{2} is the subGaussian parameter of η_{t}.

Main Result 1

Combining the previous results (and a few more matrix manipulations) we show

Theorem

- $\rho_{i}(A) \in S_{0} \cup S_{1} \cup S_{2} \Longrightarrow\|E\|_{2}=O\left(T^{-1 / 2}\right)$ - $\rho_{i}(A) \in S_{1} \cup S_{2} \Longrightarrow\|E\|_{2}=O\left(T^{-1}\right)$ - $\rho_{i}(A) \in S_{2} \Longrightarrow\|E\|_{2}=O\left(e^{-a T}\right)$ (under necessary and sufficient "regularity" conditions only)

Main Result 1

Combining the previous results (and a few more matrix manipulations) we show

Theorem

- $\rho_{i}(A) \in S_{0} \cup S_{1} \cup S_{2} \Longrightarrow\|E\|_{2}=O\left(T^{-1 / 2}\right)$
- $\rho_{i}(A) \in S_{1} \cup S_{2} \Longrightarrow\|E\|_{2}=O\left(T^{-1}\right)$
- $\rho_{i}(A) \in S_{2} \Longrightarrow\|E\|_{2}=O\left(e^{-a T}\right)$ (under necessary and
sufficient "regularity" conditions only)

Main Result 1

Combining the previous results (and a few more matrix manipulations) we show

Theorem

- $\rho_{i}(A) \in S_{0} \cup S_{1} \cup S_{2} \Longrightarrow\|E\|_{2}=O\left(T^{-1 / 2}\right)$
- $\rho_{i}(A) \in S_{1} \cup S_{2} \Longrightarrow\|E\|_{2}=O\left(T^{-1}\right)$
- $\rho_{i}(A) \in S_{2} \Longrightarrow\|E\|_{2}=O\left(e^{-a T}\right)$ (under necessary and sufficient "regularity" conditions only)

Main Result 2

Regularity condition : All eigenvalues greater than one should have geometric multiplicity one.

Theorem

If the regularity conditions are violated then OLS is inconsistent.
OLS cannot learn $A=\rho I$ where $\rho \geq 1.5$. E has a non-trivial probability distribution.

Poster Details

Please come to our poster at Pacific Ballroom \#193 at 6.30 pm today.

Thank you!

