Rademacher Complexity for Adversarially Robust Generalization

Dong Yin

joint work with

Kannan Ramchandran, Peter Bartlett UC Berkeley

ICML, 2019

Dong Yin (UC Berkeley)

Adversarially Robust Generalization

ICML, 2019 1 / 15

Machine learning models are vulnerable to adversarial perturbations.

Figure: Adding invisible perturbations to the images can lead the model to wrong predictions with high confidence (Goodfellow et al. 2015)

- Adversarial training: currently the most effective approach to training models robust to adversarial perturbations (Madry et al, 2017).
- Natural training:

 $\min_{f\in\mathcal{F}}\mathbb{E}\ell(f(\mathbf{x}),y)$

• Adversarial training:

 $\min_{f \in \mathcal{F}} \mathbb{E} \max_{\mathbf{x}' \in \mathbb{B}_{\mathbf{x}}^{\infty}(\epsilon)} \ell(f(\mathbf{x}'), y)$

Introduction

Adversarially robust generalization can be hard.

Figure: Model can achieve 96% adversarial training accuracy whereas the adversarial test accuracy is only 47% (Madry et al. 2017, Schmidt et al. 2018)

- How can we better understand adversarially robust generalization?
- This paper: Rademacher complexity analysis.

- Feature-label space $\mathcal{X} \times \mathcal{Y}$.
- Hypothesis class \mathcal{F} .
- Loss function $\ell(f(\mathbf{x}), y)$, $f \in \mathcal{F}$, $\ell_{\mathcal{F}} := \{\ell(f(\cdot), \cdot) : f \in \mathcal{F}\}.$
- Empirical risk: $R_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i)$
- Population risk $R(f) := \mathbb{E}[\ell(f(\mathbf{x}), y)]$
- Rademacher complexity

$$\mathfrak{R}_{\mathcal{S}}(\mathcal{F}) := \frac{1}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f(\mathbf{x}_{i}) \right],$$

Theorem

(Bartlett and Mendelson, 2002, Mohri et al. 2012) Suppose that $\ell(f(\mathbf{x}), y) \in [0, 1]$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following holds for all $f \in \mathcal{F}$,

$$R(f) \leq R_n(f) + 2\mathfrak{R}_{\mathcal{S}}(\ell_{\mathcal{F}}) + 3\sqrt{\frac{\log rac{2}{\delta}}{2n}}.$$

Dong Yin (UC Berkeley)

Preliminaries

- Adversarial loss function $\widetilde{\ell}(f(\mathbf{x}), y) := \max_{\mathbf{x}' \in \mathbb{B}^{\infty}_{\mathbf{x}}(\epsilon)} \ell(f(\mathbf{x}'), y)$, $f \in \mathcal{F}$
- Adversarial empirical risk:

$$\widetilde{R}_n(f) := \frac{1}{n} \sum_{i=1}^n \widetilde{\ell}(f(\mathbf{x}_i), y_i).$$

Adversarial population risk

$$\widetilde{R}(f) := \mathbb{E}[\widetilde{\ell}(f(\mathbf{x}), y)],$$

Adversarial Rademacher complexity

$$\mathfrak{R}_{\mathcal{S}}(\widetilde{\ell}_{\mathcal{F}}), ext{ where } \widetilde{\ell}_{\mathcal{F}} := \{\widetilde{\ell}(f(\cdot), \cdot) : f \in \mathcal{F}\}$$

Corollary

For any $\delta \in (0,1)$, with probability at least $1 - \delta$, the following holds for all $f \in \mathcal{F}$, $\widetilde{R}(f) \leq \widetilde{R}_n(f) + 2\mathfrak{R}_{\mathcal{S}}(\widetilde{\ell}_{\mathcal{F}}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2n}}.$

How do we compare $\mathfrak{R}_{\mathcal{S}}(\ell_{\mathcal{F}})$ and $\mathfrak{R}_{\mathcal{S}}(\widetilde{\ell}_{\mathcal{F}})$?

Main Results

Binary linear classifier

Theorem

Let
$$\mathcal{F} := \{ \langle \mathbf{x}, \mathbf{w} \rangle : \|\mathbf{w}\|_{p} \leq W \}$$
 and
 $\widetilde{\mathcal{F}} := \{ \min_{\mathbf{x}' \in \mathbb{B}_{\mathbf{x}}^{\infty}(\epsilon)} y \langle \mathbf{w}, \mathbf{x}' \rangle : \|\mathbf{w}\|_{p} \leq W \}$. Suppose that $\frac{1}{p} + \frac{1}{q} = 1$. Then,
there exists a universal constant $c \in (0, 1)$ such that

$$\max\{\mathfrak{R}_{\mathcal{S}}(\mathcal{F}), c\epsilon W \frac{d^{\frac{1}{q}}}{\sqrt{n}}\} \leq \mathfrak{R}_{\mathcal{S}}(\widetilde{\mathcal{F}}) \leq \mathfrak{R}_{\mathcal{S}}(\mathcal{F}) + \epsilon W \frac{d^{\frac{1}{q}}}{\sqrt{n}}.$$

- Tight upper and lower bounds.
- Adversarial Rademacher complexity is **never smaller** than its natural counterpart.
- Unavoidable dimension dependence in adversarial Rademacher complexity (unless *p* = 1).

- Multi-class linear classifiers: similar dimension dependence also exists in the margin-based risk bound.
- Lower bound of adversarial Rademacher complexity for neural networks: existence of dimension dependence.
- Risk bound on the adversarial loss for one-hidden layer ReLU network via SDP surrogate loss (Raghunathan et al. 2018).

Experiments

MNIST, Linear classifier

Figure: ℓ_1 regularization reduces adversarial generalization gap.

Experiments

MNIST, Linear classifier

Figure: Adversarial generalization gap becomes larger in higher dimensions.

Experiments

MNIST, four layer CNN

Figure: ℓ_1 regularization reduces adversarial generalization gap.

Thank you

Poster: Pacific Ballroom 207