Leveraging Low-Rank Relations between Surrogate Tasks in Structured Prediction

Giulia Luise, Dimitris Stamos, Massimiliano Pontil, Carlo Ciliberto

ISTITUTO ITALIANO DI TECNOLOGIA

Introduction

• structured problems: multilabelling, muticlass classification, ranking etc.

- Multitask techniques leveraging similarity of outputs are used to lower sample complexity of the problem
- GOAL: combining the two and study when and how there is an advantage

Structured Problem

 ${\mathcal X}$ input space ,

 $\mathcal Y$ structured output space

Find $f: \mathcal{X} \rightarrow \mathcal{Y}$ minimizing the expected risk

 $\mathcal{E}(f) := \int_{\mathcal{X} \times \mathcal{Y}} \ell(f(x), y) \, d\rho(x, y)$

given examples $(x_i, y_i)_{i=1}^n$

?

Structured Problem

 ${\mathcal X}$ input space ,

 ${\mathcal Y}$ structured output space

Find $f: \mathcal{X} \to \mathcal{Y}$ minimizing the expected risk

 $\mathcal{E}(f) := \int_{\mathcal{X} \times \mathcal{Y}} \ell(f(x), y) \, d\rho(x, y)$

given examples $(x_i, y_i)_{i=1}^n$

?

Surrogate Problem

- ${\mathcal X}$ input space ,
- *H* surrogate output space
 (Hilbert space, possibly infinite dimensional)

 $\|\cdot - \cdot\|_{\mathcal{H}}^2$ surrogate loss

Structured Problem

 ${\mathcal X}$ input space ,

 ${\mathcal Y}$ structured output space

Find $f: \mathcal{X} \rightarrow \mathcal{Y}$ minimizing the expected risk

$$\mathcal{E}(f) := \int_{\mathcal{X} \times \mathcal{Y}} \ell(f(x), y) \, d\rho(x, y)$$

given examples $(x_i, y_i)_{i=1}^n$

Surrogate Problem

- ${\mathcal X}$ input space ,
- *H* Surrogate output space
 (Hilbert space, possibly infinite dimensional)

$$\|\cdot - \cdot\|_{\mathcal{H}}^2$$
 surrogate loss

$$\min_{g:\mathcal{X}\to\mathcal{H}} n^{-1} \sum_{i=1}^{n} \|g(x_i) - \mathsf{c}(y_i)\|_{\mathcal{H}}^2 + \lambda \|g\|_{\mathsf{HS}}^2$$

 \hat{g} vector valued surrogate estimator

Structured Problem

 ${\mathcal X}$ input space ,

 ${\mathcal Y}$ structured output space

Find $f: \mathcal{X} \to \mathcal{Y}$ minimizing the expected risk

$$\mathcal{E}(f) := \int_{\mathcal{X} \times \mathcal{Y}} \ell(f(x), y) \, d\rho(x, y)$$

given examples $(x_i, y_i)_{i=1}^n$

Surrogate Problem

- ${\mathcal X}$ input space ,
- *H* Surrogate output space
 (Hilbert space, possibly infinite dimensional)

$$\|\cdot - \cdot \|_{\mathcal{H}}^2$$
 surrogate loss

$$\min_{g:\mathcal{X}\to\mathcal{H}} n^{-1} \sum_{i=1}^{n} \|g(x_i) - \mathsf{c}(y_i)\|_{\mathcal{H}}^2 + \lambda \|g\|_{\mathsf{HS}}^2$$

vector valued surrogate estimator

decoding $\mathsf{d}:\mathcal{H} o\mathcal{Y}$

g

coding

 $\mathsf{c}:\mathcal{Y}\to\mathcal{H}$

Structured Problem

 ${\mathcal X}$ input space ,

 ${\mathcal Y}$ structured output space

Find $f: \mathcal{X} \to \mathcal{Y}$ minimizing the expected risk

$$\mathcal{E}(f) := \int_{\mathcal{X} \times \mathcal{Y}} \ell(f(x), y) \, d\rho(x, y)$$

given examples $(x_i, y_i)_{i=1}^n$

 $\hat{f} = \mathsf{d} \circ \hat{g}$

g

Surrogate Problem

- ${\mathcal X}$ input space ,
- H surrogate output space
 (Hilbert space, possibly infinite dimensional)

$$\|\cdot - \cdot \|_{\mathcal{H}}^2$$
 surrogate loss

$$\min_{g:\mathcal{X}\to\mathcal{H}} n^{-1} \sum_{i=1}^{n} \|g(x_i) - \mathsf{c}(y_i)\|_{\mathcal{H}}^2 + \lambda \|g\|_{\mathsf{HS}}^2$$

vector valued surrogate estimator

$$\min_{g:\mathcal{X}\to\mathcal{H}} n^{-1} \sum_{i=1}^{n} \|g(x_i) - c(y_i)\|_{\mathcal{H}}^2 + \lambda \|g\|_{\text{HS}}^2$$

Single/independent task learning

Is it possible to apply multitask learning techniques to enforce similarity?

$$\min_{g:\mathcal{X}\to\mathcal{H}} n^{-1} \sum_{i=1}^{n} \|g(x_i) - \mathsf{c}(y_i)\|_{\mathcal{H}}^2 + \lambda \|g\|_*^2 \qquad \qquad \text{Trace norm regularization}$$

Challenges: can we deal with infinite dimensional surrogate spaces?

$$\min_{g:\mathcal{X}\to\mathcal{H}} n^{-1} \sum_{i=1}^{n} \|g(x_i) - \mathsf{c}(y_i)\|_{\mathcal{H}}^2 + \lambda \|g\|_*^2 \qquad \qquad \text{Trace norm regularization}$$

Challenges: can we deal with infinite dimensional surrogate spaces?

Using the variational formulation of trace norm:

$$\hat{g}(x) = \sum_{i=1}^{n} \alpha_{\mathbf{i}}(x) \mathsf{c}(y_i)$$

The decoding of the setting yields the following estimator for the original problem:

$$\hat{f}(x) = \operatorname{argmin}_{y \in \mathcal{Y}} \sum_{i=1}^{n} \alpha_{\mathbf{i}}(x) \ell(y, y_i)$$

Algorithm 1 - Low-rank Structured Prediction

Input: $K_{\chi}, K_{y} \in \mathbb{R}^{n \times n}$ empirical kernel matrices for input and output data, λ regularizer, r rank, ν step size, k number of iterations.

Initalize: Sample $M_0, N_0 \in \mathbb{R}^{n \times r}$ randomly.

For
$$j = 0, ..., k$$
:
 $M_{j+1} = (1 - \lambda \nu)M_j - \nu (K_x M_j N_j - I)K_y N_j$
 $N_{j+1} = (1 - \lambda \nu)N_j - \nu (N_j M_j^{\top} K_x - I)K_x M_j$

Return: The weighting function $\alpha : \mathcal{X} \to \mathbb{R}^n$ with $\alpha(x) = N_k M_k^\top v_x$ for any $x \in \mathcal{X}$

Excess risk bounds for the surrogate:

$$\mathcal{R}(\hat{g}) - \min_{g: \mathcal{X} \to \mathcal{H}} \mathcal{R}(g) \le \mathsf{M} \ n^{-\frac{1}{2}}$$
 w.h.p

Surrogate expected risk: $\mathcal{R}(g) := \int \| (g(x), \mathbf{c}(y)) \|_{\mathcal{H}}^2 \, d\rho$

and structured problem:

$$\mathcal{E}(\hat{f}) - \min_{f:\mathcal{X} \to \mathcal{Y}} \mathcal{E}(f) \le \sqrt{\mathsf{M}} \ n^{-\frac{1}{4}}$$
 w.h.p

Expected risk: $\mathcal{E}(f) := \int \ell(f(x), y) \, d\rho$

Studying the constant M, we identified regimes where the **proposed** MTL **estimator** exhibits **better generalization performance** than its ``independent task'' counterpart.

Experiments

Experiments on ranking problems on a range of datasets:

	ml100k	jester1	jester2	jester3	sushi
MART	$0.499(\pm 0.050)$	$0.441 (\pm 0.002)$	$0.442 (\pm 0.003)$	$0.443 (\pm 0.020)$	$0.477 (\pm 0.100)$
RankNet	$0.525(\pm 0.007)$	$0.535(\pm 0.004)$	$0.531 (\pm 0.008)$	$0.511 (\pm 0.017)$	$0.588(\pm 0.005)$
RankBoost	$0.576(\pm 0.043)$	$0.531 (\pm 0.002)$	$0.485(\pm 0.061)$	$0.496(\pm 0.010)$	$0.589(\pm 0.010)$
AdaRank	$0.509(\pm 0.007)$	$0.534(\pm 0.009)$	$0.526(\pm 0.001)$	$0.528 (\pm 0.015)$	$0.588(\pm 0.051)$
Coordinate Ascent	$0.477(\pm 0.108)$	$0.492(\pm 0.004)$	$0.502(\pm 0.011)$	$0.503 (\pm 0.023)$	$0.473 (\pm 0.103)$
LambdaMART	$0.564~(\pm 0.045)$	$0.535~(\pm 0.005)$	$0.520 \ (\pm 0.013)$	$0.587~(\pm 0.001)$	$0.571 (\pm 0.076)$
ListNet	$0.532(\pm 0.030)$	$0.441 (\pm 0.002)$	$0.442 (\pm 0.003)$	$0.456 (\pm 0.059)$	$0.588(\pm 0.005)$
Random Forests	$0.526 (\pm 0.022)$	$0.548 (\pm 0.001)$	$0.549(\pm 0.001)$	$0.581 (\pm 0.002)$	$0.566 (\pm 0.010)$
SVMrank	$0.513(\pm 0.009)$	$0.507 (\pm 0.007)$	$0.506(\pm 0.001)$	$0.514(\pm 0.009)$	$0.541 (\pm 0.005)$
SELF + · _{HS}	$0.312(\pm 0.005)$	$0.386(\pm 0.005)$	$0.366(\pm 0.002)$	$0.375(\pm 0.005)$	$0.391 (\pm 0.003)$
(Ours) SELF + $\ \cdot\ _*$	$0.156\ (\pm 0.005)$	$0.247(\pm 0.002)$	$0.340(\pm 0.003)$	$0.343 \ (\pm 0.003)$	$0.313\ (\pm 0.003)$

Surrogate Low-Rank regularizer is beneficial in practice!

Poster: Pacific Ballroom #202

Thank you!